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O Preface

0.1 Introduction: what’s this about a napkin?

Inspiration for visual and content styles, including the title, comes from the work of
Evan Chen', whose Infinitely Large Napkin is designed to be a complete and essential set
of notes from pure mathematics.

Here, I have adapted the style of Evan’s Napkin for a typeset version of notes? from
a semester-long solid mechanics course, for example 2.002 as taught by Professor Ken
Kamrin, or 2.071 as taught by Professor Lallit Anand. These notes roughly follow the
content of 2.002, with additional topics in finite elasticity developed in section 4 and
finite plasticity developed in section 6.6.

This set of notes is far from perfect. If you spot errors or inconsistencies, please let me
know at achen3140@mit.edu.

0.2 Additional Resources

The following collection of texts and notes offer a varied and thorough treatment of
continuum mechanics and materials science. The reader is encouraged to consult them
when working through these notes.

o Mechanics and Materials II (2.002) on OpenCourseWare

e Anand, L., and Govindjee, S. (2020). Continuum Mechanics of Solids. Oxford
University Press. ISBN: 978-0-19-886472-1.

o Anand, L., Kamrin, K., and Govindjee, S. (2022). Introduction to Mechanics of
Solid Materials. Oxford University Press. ISBN: 978-0-19-286607-3. In these
notes this textbook is referred to as AKG. (Numbered exercises refer to particular
problems in the accompanying exercise book.)

o Gurtin, M., Fried, E., and Anand, L. (2010). The Mechanics and Thermodynamics
of Continua. Cambridge University Press. ISBN: 978-0-521-40598-0.

o Abeyaratne, R. (2024). Lecture Notes on the Mechanics of Elastic Solids, Volume 3
(An Introduction to Finite FElasticity), accessible at this link

o Ashby, Michael F., and Jones, David R. H. (2012). Engineering Materials 1:
An Introduction to Properties, Applications, and Design, fourth edition. ISBN:
978-0-08-096665-6.

o Callister, William D., and Rethwisch, David G. (2010). Materials Science and
Engineering: An Introduction, eighth edition. ISBN: 978-0-470-41997-7.

e Course notes from ME185 at UC Berkeley, Introduction to Continuum Mechanics,
as taught by Professor Panayiotis Papadopoulos, accessible at this link

o Course notes from Professor Piaras Kelly, University of Auckland, accessible at this
link
'No relation (!)

2This set of notes is not meant to be a complete or standalone text. Please also refer to the more
complete sources in section 0.2.



https://web.evanchen.cc/napkin.html
https://ocw.mit.edu/courses/2-002-mechanics-and-materials-ii-spring-2004/
https://web.mit.edu/abeyaratne/lecture_notes.html
https://csml.berkeley.edu/Notes/ME185.pdf
https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/index.html
https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/index.html
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0.3 Notation

In general, boldface lowercase Roman letters, e.g. u, represent vector quantities.
Boldface uppercase Roman letters, e.g. S, represent tensor quantities of second order.
Blackboard characters, e.g. C, represent tensor quantities of fourth order.

The major exceptions to these rules are for vector quantities which refer to vectors
within the reference configuration, which will be denoted in uppercase boldface letters,
e.g. X, and for the small strain tensor € and the small stress tensor o.

I will denote the Cauchy stress tensor by T, the first Piola stress tensor by P, and the
second Piola stress tensor by S.

Subscripts will nearly always refer to a component of a vector or tensor?, cf. u =
(ug,uy,uy) versus [u] = wu;. Derivatives will always be indicated using e.g. d(-)/dx,
d(+)/0x, or f'(x) only when it is explicitly clear that f = f(z) alone.

“Vocabulary” words which have a particular definition will be given in blue boldface
text and when necessary, explicit definitions will be preceded by the boldface word
Definition.

Text in a dark red box represents a Key Fact which is usually an important relation,
consequence, or conceptual summary. (Acknowledgment for this notation goes to Profes-
sor Alexander Paulin.)

Here is an example of what a Key Fact looks like.

3The summation convention (see section 1.2) for subscript indices will only ever be used with the
subscripts 4, 7, and k in three dimensions and with the subscripts «, 3, and v in two dimensions; that
is, subscripts like x, y, r, etc. will never be summed over.


https://math.berkeley.edu/~apaulin/index.html
https://math.berkeley.edu/~apaulin/index.html
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]. Mathematical Preliminaries

In this chapter we summarize the math concepts that underlie solid mechanics, namely
the mathematics of vectors and tensors in finite-dimensional vector spaces. Unless
otherwise noted we will restrict our attention to three-dimensional vectors and tensors,
motivated by the desire to describe deformations in our spatially three-dimensional
universe. To this end, let us agree that by default we will consider a three-dimensional
vector space E? called the “Euclidean space” with a (non-unique) right-hand! orthonormal
basis defined as {e1, ez, e3} and a fixed origin O. To make things a bit easier to write
down, we will adopt a convention whereby Latin subscripts 7, j, etc. refer to each one of
these three dimensions in turn, so that the abbreviated notation {e;} is equivalent to the

tuple {e1> €2, 93}-

1.1 Vectors and Tensors

Definition 1.1.1. A vector u is a directed element that extends from the origin O to
another point U = (Uy, Us, Us) in E3. In this way, as long as the origin is specified, the
vector is associated with this point in a one-to-one manner. Given the orthonormal basis
{e;}, the components of u can then be associated with the coordinates of the point U by

ul-:u-ei:Ui.

The vector components relative to a basis u; can be organized into an array, for example
u = (3,1,4), or into a componentwise addition

3
u= Z Ui€i,
i=1

for example u = 3e; + leg + 4es.

Importantly, any other set of orthonormal basis vectors could be chosen to describe E3.
The components U; of the point U, and thus the components u; of the vector u, would
then change with the basis, even though both O and the point U remain fixed in space.
The moral here is that the representation of a vector in a basis is unique to that basis.

Definition 1.1.2. The magnitude of the cross product between two vectors u and
v, written u X v, quantifies the area of the parallelogram defined as having u and v
as its edges. Analagously, given three non-coplanar vectors u, v, w, the scalar triple
product is defined to be [u,v,w| =u- (v x w). As the name implies, the result is a
scalar; this scalar quantifies the volume of the parallepiped defined as having u, v, w as a
set of edges.

Definition 1.1.3. A tensor A is a linear transformation? which maps a given vector in
E3 to another vector in E3. The “transformation” part of this definition means that the

1Here, right-handedness is the requirement that e; X e2 = es.

2This type of linear transformation which operates on vectors is specifically a second-order tensor. It is
no coincidence that the components of this type of tensor can be specified in an array of order two,
and consequently that the component representation, i.e., A;;, requires two subscripts. Generalizing,
vectors are sometimes called first-order tensors, although we will avoid that term here.



1 Mathematical Preliminaries 7

tensor operates on an “input” vector (e.g. u) and results in an “output” vector (e.g. v),
which is written

v = Au.

The “linear” part of the definition means that A has the following properties, for all
vectors u, v € E? and for all scalars c:

A(u+v)=Au+ Av
A(cu) = cAu

As with vectors, once a basis is specified, the components A;; of a tensor can be written
down in terms of that basis. Analogously to the formulation u; = u - e;, we can “extract”
the components of a tensor A relative to a basis {e;} as

Aij = €; - Aej.

Commonly the components A;; relative to a basis are organized into tabular form inside
a matriz, just as the components u; of a vector can be organized into an array. Two
special tensors are the identity tensor I (in some texts, also written 1), which maps
all vectors to themselves, and the zero tensor 0, which maps all vectors to the zero
vector.

Example 1.1.4 (Special tensors)

For all vectors u € E3,

Definition 1.1.5. The tensor product is a special operation that creates a linear
mapping (i.e., a tensor) using two vectors. Given two vectors v, w € E3, the tensor
product between them is written v ® w and defines a mapping such that

(ve wiu = (u-w)v
for all u € E3. The ij-th component of the tensor product is given by (v ® W)ij = VWwj.

This definition allows us to construct a basis of tensors in the same way that the three
vectors {e;} served as a basis for all other vectors in E3. Specifically, it can be shown
that the nine tensor products

e X €;
(recall that both i and j iterate over the values 1, 2, and 3) define a (non-unique) basis of
all linear transformations within E3. Thus, analagously to the componentwise addition

for vectors, we can write
3 3

A:ZZAijei(X)ej

i=1j=1

for a tensor A.
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1.2 Summation Convention

3
One can imagine that it gets annoying to write sums like Z every time we want to
i=1
describe the components of a vector or tensor relative to a basis. Fortunately most
physicists, going back to Einstein, are equally notationally lazy, and have developed a
shorthand — the summation convention — to get around this. The generally agreed-upon

rules of the convention are that:
1. Latin subscripts i, j, etc. are assumed to take on the exact values 1, 2, 3.

2. Greek subscripts «, 3, etc. are assumed to take on the exact values 1, 2 (for
two-dimensional problems).

3. If a subscript appears exactly twice in a single term, there is an implicit sum from
1 to 3 over that subscript for that term.

4. A subscript is not allowed to appear more than twice in a single term, unless it
is explicitly specified that the summation convention is suspended for that term. If
this is the case usually something like “(no sum on 7)” is written.

Sometimes, twice-repeating subscripts are referred to as “dummy” because the actual
character used to write the subscript does not matter; it is simply being summed over.
Likewise, subscripts that are not summed over are called “free”. The following examples
should help clarify the rules:

Example 1.2.1 (Summation convention)

Some examples of the summation convention shortcut:

3
1. u=wue; < u= Zuiei = uje + usez + uses
i=1
3
2. u-v=uv, < u-v-= Zuivi = u1v1 + ugv2 + uzvs
i=1
3 3
3. A=Aje,®e; <= A= Z Z A;je; ® ej (nine terms!)
i=1j=1
3
4. Au = Ajju; < Au= Z Ajju; = Sipur + Sipua + S;3ug. Notice that this
j=1

actually represents three different values, one of which is S11uy + S1ous + S13us.

5. In the previous example, we could have equivalently written Au = A;,uy or
Au = Ajquy or Au = Aj u; here k (or ¢ or z) is a dummy variable, whereas ¢
is free.

6. The expression u;v; has no summation, but represents nine individual terms,
one of which is usvs.

7. The expression Ap,ByCys contains a syntax error, because the subscript ¢ is
repeated three times.
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8. The equation A;; = B;;, contains a syntax error, because the free indices on
each side of the equation are mismatched.

9. The equations v; = A;ju; and v; = Aju; are both syntactically correct but
describe two different linear transformations. However, the equations v; = A;;u;
and v; = Aj;u; describe the same linear transformation.

Uy

8.731‘

10. In Cartesian coordinates, the vector divergence is given by div u =

ou; B ouq aU2 Ous
divu = Z 63@1 8:61 8362 + 0xs

Exercise 1.2.2. Working in components, show that for all vectors a, b, ¢, and d, that
(a®b)lced)=(b-c)(a®d).

Moreover if A is a tensor, show that

A(a®@b)=(Aa)®b.

1.3 Kronecker Delta and Levi-Civita Symbol

Definition 1.3.1. The Kronecker delta symbol d;; has a value of either 0 or 1,
according to the rule
0, i#7
0ij = { ‘ 7

1, 1=

This definition is motivated by the dot product of two basis vectors, which should
return 1 if the basis vectors are identical or 0 otherwise. Written out, this statement is
simply

e; - ej = 513

Example 1.3.2

The Kronecker delta can be used under summation:
0 = 3.

Recall that this notation actually means

3

8ii = 6ii = 011 + Og2 + 033,
i=1

and each of the terms on the right hand side evaluates to 1 by definition. This is
equivalent to organizing the nine possible values of ¢;; in a 3 x 3 matrix and taking
its trace.

Definition 1.3.3. The Levi-Civita (also called the alternating) symbol e;j; has a
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value of —1, 0, or 1, according to the rule

+1, if {i,j, k) = {1,2,3}, {2,3,1}, or {3,1,2}
eijk =4 —1, if{i,5,k} ={2,1,3}, {1,3,2}, or {3,2,1}

0, if an index is repeated.

The ordering of subscripts corresponding to e;j; = 1 is referred to as an even permutation
of {1,2,3}, and the ordering of subscripts corresponding to e;j; = —1 is referred to as an
odd permutation.

This definition is motivated by the cross product of basis vectors in our right-hand
orthonormal basis. A right-hand cross-product should return +1, a left-hand cross-
product should return —1, and a cross-product with any vector and itself should return
0. This is captured by the statement

€e; - (ej X ek) = €ijk-

The symbols 6;; and e;;;, are very powerful when used with other terms in index notation.
For example, the vector cross product can be written compactly as u X v = e;;pu;vie;,
or equivalently the i-th component of the cross-product can be written as

(U X V)i = €jjru;vg.

Notice that in both of these expressions sums are implicit on j and k (they are dummy
variables), but not on i (it is a free variable), and as such each expression actually
represents three individual equations, corresponding to each component of the cross-
product vector.

1.4 Properties of Tensors
Let A and B be second-order tensors in E3, and let u and v be vectors in E3.
Definition 1.4.1. The transpose of A, denoted AT, is the unique tensor such that
u-Av=v-ATu
In any basis, the components of A and AT are related by
[AT];j = Aji.

If a tensor is equal to its transpose, the tensor is called symmetric. If a tensor is equal
to the negative of its transpose, the tensor is called skew.

Definition 1.4.2. The product of two tensors between A and B represents a
composite mapping when applied to a vector, for example

ABu = A(Bu)

describes first the action of the linear transformation B on the vector u, then the action of
the linear transformation A on the result of the first mapping. When a basis is specified,
each component of the composite map is related to the components of each tensor by

[AB]Z] = AikBkj-

In general, AB # BA — the order matters!
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Definition 1.4.3. The contraction of two tensors A and B, also called the inner
product, is the function which yields the scalar denoted A - B and defined to be

A -B=tr (AB”)
or in component form
A -B= AZ]BW

This computation is analogous to the vector dot product and results in similar corollaries.
For example, we define the magnitude of a tensor as |A| = VA - A and we say that
two tensors A and B are orthogonal if A - B = 0. Moreover, the contraction between a
symmetric and a skew tensor is exactly zero.

Definition 1.4.4. The trace of a tensor A, denoted tr A, is formally defined as the
scalar which satisfies
tr(u®v)=u-v.

This is equal to the sum of the diagonal components of A expressed in any basis. A
tensor is called traceless or deviatoric if its trace is exactly zero.

I Exercise 1.4.5. True or false? Every skew tensor is deviatoric.

Definition 1.4.6. The determinant of a tensor A is formally defined as the scalar
det A such that for any non-coplanar vectors u, v, w,

Au - (Av x Aw)
u-(vxw)

det A =

This is equal to the usual matrix determinant of A expressed in any basis, which is easier
to compute. The determinant represents how much the volume of the parallelepiped
defined by the vectors u, v, w changes after each of the vectors undergoes the linear
transformation A.

Definition 1.4.7. If the linear transformation represented by a tensor is both (a) injective
(one-to-one) between elements in its domain and co-domain, and (b) surjective (onto) its
entire co-domain, the mapping is called bijective and the tensor is said to be invertible.
If A is an invertible tensor, then we write its inverse A~! and

AA ' =ATA=1

Thus, A~! represents the inverse linear transformation from A. There are a number of
equivalent conditions for invertability, some of which require a basis to be specified. One
useful condition is that A is invertible if and only if det A # 0.

Definition 1.4.8. If the linear transformation represented by a tensor preserves the
lengths of vectors and preserves the angle between vectors, it is said to be orthogonal.
If A is an orthogonal tensor, it satisfies the relation

AAT = ATA =1,

and the inverse of the linear transformation A is exactly its transpose. Orthogonal linear
transformations represent rotations (if det A = 1, also called proper orthogonal) and
reflections (det A = —1, also called improper orthogonal).

Definition 1.4.9. A tensor A is positive definite if and only if for all nonzero vectors
u?
u-Au > 0.
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Exercise 1.4.10. Let F be an invertible tensor. Show that the tensor C = FTF is
symmetric and positive definite.

Definition 1.4.11. A vector m is an eigenvector of A with corresponding eigenvalue
A if and only if
Am = \m,

i.e., the action of the linear transformation A on m changes its magnitude by a factor of A
but not its direction. We say two tensors are collinear if they share the same eigenvectors.
Eigenvalues of a tensor A can be found by solving the characteristic equation

det (A — \I) =0,

which in our case will be a third-order polynomial equation in A. The three roots of this
equation are the three eigenvalues. For each eigenvalue )\;, the corresponding eigenvector
can be found by computing the kernel of (A — \;I), i.e. the vector m; for which

(A —\I)m; = 0.
Furthermore, the characteristic equation can be written in the form
NN+ A= I;=0

where the I; represent invariants of A, scalar quantities which are functions of the
tensor but independent of any basis representation. The invariants in the characteristic
equation are related to the trace and determinant of the tensor and to the eigenvalues:

L=tr A=) +X+ A3
1
I = 5(tr A)2 —tr A% = Ao + Xods + A3\

I3 =det A = )\1)\2)\3

(Note that other invariants exist; for example, the quantity I3 is always invariant of
basis.) Finally, if the tensor A is symmetric, the eigenvalues are guaranteed to all be real,
and a basis of eigenvectors can be established (i.e., there exist three mutually orthogonal
eigenvectors). In this situation the tensor can be written as a diagonal matrix with
respect to this basis of eigenvectors. If the tensor is symmetric and positive-definite, the
above is true, plus the fact that all eigenvalues will be positive.

Exercise 1.4.12. Let A be a symmetric, positive-definite tensor. Show that any eigenvalue
of A must be positive.

1.4.1 Basis Transformation

The usual representation of a vector or tensor is intimately tied to the basis used to
represent it. However, there is no single basis that must always be used. To this end, the
transformation equations in this section can be used to write down the components of a
vector or tensor in a new basis, provided the new basis vectors €] are known in terms of
the original basis vectors e;.

Definition 1.4.13. The direction cosine between two basis vectors, denoted cos(e}, €;),
is the cosine of the angle between the two vectors. Provided these vectors are of unit
magnitude, the direction cosine is equal to their dot product, cos(e}, e;) = €/ - e;.
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Key Equation 1.4.14

A vector v and a tensor T in a given basis {e;} may be rewritten as v/ and T,
respectively, in terms of a new basis {e}} by

v =Qv
T = QTQ”
where Q is the orthogonal tensor of direction cosines,

cos(e],e;) cos(e},ez) cos(el,es)
[Q] = [cos(eh, e1) cos(e),ez) cos(eh,es)
cos(es, e1) cos(es,er) cos(ef,es)

Because all the e; and all the e} are unit vectors, it follows that
cos(e}, ej) = €, - e;.

Note that because Q is orthogonal, the inverse transformation (i.e. from {e}} back
to {e;}) can be computed using Q” in place of Q and vice versa.

Example 1.4.15

A basis {e], €), €5} obtained by rotating the basis {ej, e2, e} through an angle 6
about es has the relations

€] =cos(f)e; +sin(h)e,
ey, = —sin(f)ey + cos(f)e;
e; =eg

and thus the rotation tensor Q between these bases has components

cos(f) sin(d) 0
[Q] = |—sin(A) cos(f) 0
0 0 1

1.4.2 Decomposition of Tensors

A tensor A can be decomposed a number of useful ways:

1. Symmetric-skew decomposition:

1 1
A:§m+Aﬁ+§m—Aﬂ

symmetric skew

2. Spherical-deviatoric decomposition:

1 1
A=A- §(tr A)I + g(tr AT

S —_———
deviatoric spherical

Note that the spherical component is diagonal. Sometimes, the deviatoric part of
A is denoted A’.
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3. Spectral decomposition®: for a symmetric tensor A the eigenvectors {m;} form an
orthonormal basis.

a) Three distinct eigenvalues \;:

3 )\1 0 0
A=) Amom; [Al=]0 X 0
i=1 0 0 A3

The matrix representation (right) gives A expressed in the basis of eigenvectors.

b) Two distinct eigenvalues, \1 # Ao = As:
A=X\m ®m;+ A(I-m; @m)

The eigenvectors are m; and any vector orthogonal to m;.

c) No distinct eigenvalues, A1 = Aa = Ag = A
A=)l

This happens if and only if A is spherical. Any vector is then an eigenvector
of A.

Note that the spectral decomposition of a tensor allows us to define the tensor
square Toot:

Definition 1.4.16. Let A be a tensor with the spectral decomposition

3
=1

Then its tensor square root is expressed in the same basis of eigenvectors as

3

i=1

Remark 1.4.17: Actually, the tensor square root is a special case of the general
rule that if A has the spectral decomposition given, then for all n > 0, the
n-th power of A can be expressed as

4. Polar decomposition: if a tensor A has positive determinant, det A > 0, there exist
unique symmetric, positive definite tensors U and V as well as a proper orthogonal
(rotation) tensor R such that

A =RU = VR.

3Not all tensors admit a spectral decomposition. Of practical use to us are tensors for which the
eigenvalues are real.
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Exercise 1.4.18. Let A and B be tensors and let B’ denote the deviatoric part of B. Show
that
A-B=A.B.

Exercise 1.4.19. Let C be a symmetric tensor and let D be a skew tensor. Show that

C-D=0.

1.4.3 Fourth-order Tensors

Definition 1.4.20. A fourth-order tensor is a linear operator that maps a second-
order tensor to another second-order tensor. For a fourth-order tensor C, this operation

is written
B = CA.

The linearity properties (addition and scalar multiplication) introduced previously apply
to fourth-order tensors, because the fourth-order tensor produces a linear transformation.
Moreover, once a basis is specified, the components of a fourth-order tensor can be
written down using four subscripts. The basis may be specified directly in terms of four
linearly independent vectors, or by means of second-order “basis tensors”:

Cijk = Eij(CEg) = (e; ® €j)C(er ® €;).

Example 1.4.21
For all linear transformations A,
o the identity fourth-order tensor I having components I;;;; = d;,0;; maps A to

itself,
IA = A,

o the fourth-order tensor I having components ijl = 0y0;; maps A to its
transpose, ~
IA = AT;

o the fourth-order tensor I¥™ = (I + I) having components Ik = 2 (6ibj1 +
di6jx) maps A to its symmetric part,

I™MA = sym A;

o the fourth-order tensor I ® I having components d;;0; maps the tensor A to
the tensor (trA)IL

Exercise 1.4.22. Write the components of the fourth-order tensor which maps any
second-order tensor to its deviatoric part.

1.5 Vector Calculus

In this section we will briefly review the calculus of scalar, vector, and tensor fields in E3.
In the context of solid mechanics, a scalar (or vector or tensor) field refers to a scalar (or
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vector or tensor) quantity, e.g. temperature (or velocity or stress), which is defined at
every point in a relevant subset of E% we call the domain. Usually these fields are taken
to be “smooth” enough such that they can be differentiated as necessary?.

To formulate these fields, let x represent a vector variable, for example one that
represents position in £3. Let ¢ = ¢(x) be a scalar function, u = u(x) be a vector function,
and T = T(x) be a tensor function of x all defined everywhere on E3. Accordingly, we
define an orthonormal basis such that the components of u(x) may be written as [u;],
and the components of T(x) may be written as [T;;]. It will be simplest to specify the
expressions for vector calculus operations in terms of their components with respect to
this basis.

Definition 1.5.1. The gradient of a function quantifies its rate of change at the position
x with respect to a given direction.

e The gradient of a scalar field is a vector field,

Ip(x)
ox;

[grad ¢(x)]; =

e The gradient of a vector field is a tensor field,

erad () = S5

Accordingly, the directional derivative in a given direction b (i.e. rate of change in the
direction b) is given by
(grad ¢) - b or (grad v)b.

Definition 1.5.2. The divergence of a function at a point quantifies the extent to
which that point is a source or sink of the relevant quantity.

e The divergence of a vector field is a scalar field,

[div v(x)] = 8‘(;;:{) = tr(grad v(x))

e The divergence of a tensor field is a vector field,
OT5(x)

[div T(x)]; = ij

Definition 1.5.3. The curl of a function at a point quantifies the extent to which the
relevant quantity experiences local rotation there.

e The curl of a vector field is a vector field,

Ovi(x)
1 i = €jj
[curl v(x)]; = ejjk oz,
e The curl of a tensor field is a tensor field,
0T j,(x)
[curl T(x)};i = eipqajizp

4Apologies to the mathematicians for this extremely non-rigorous statement. For the most part, we
simply request that enough continuous derivatives exist in order for the relevant fields of interest to
play nice.
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Notice that the gradient increases the order of a field, the divergence decreases the
order of a field, and the curl preserves the order of a field. It is possible to combine the
gradient and divergence operations into a second-order derivative which preserves the
order of a field; this composite operation is called the Laplacian and denoted A.

e The Laplacian of a scalar field is a scalar field,
0%¢

A¢ = div grade =
e The Laplacian of a vector field is a vector field,

[Av(x)]; = [div gradv]; = Ov;
T IAvs ' Ox;0x;

e The Laplacian of a tensor field is a tensor field,

T -
AT)jj = —2
(ATl 0x,L0xy

Exercise 1.5.4. Let A be a tensor with deviatoric part A’. Compute the following
derivatives:

tr A)
oA
OA

1.

2 0A
9 3
5 5A (\[Q'A ')

Of use later on will be the principle of localization.

Key Equation 1.5.5 (Localization theorem)

Let g(x) be a continuous scalar, vector, or tensor field valid on a subset of E3 called
R. If and only if

/Pg(x) dv =0

for all P C R, then
9(x) =0

everywhere in R.

To sketch an outline of the proof, assume for contradiction that g(x) # 0 somewhere
in R, and call the region for which this is true F. Without loss of generality we can
take g(x) > 0 throughout F. Then we could pick a small and very carefully crafted P
with size 7 /2. Evaluating the integral [ g(x) dV" would then result in a positive result,
which is a contradiction. Therefore our assumption must be wrong and g(x) must be
zero throughout R.

Finally we will make use of the divergence theorem, which gives us a recipe to convert
between volume integrals taken over an enclosed region and surface integrals taken over
its corresponding boundary.
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Key Equation 1.5.6 (Divergence theorem)

Let R be a domain with boundary R with unit outward normal n. Then, for a
scalar field ¢, vector field v, and tensor field T,

on dA = / grad ¢ dV
R R

/ v-ndA:/ div v dV
OR R

/ ’I‘ndA:/ div T dV
R R

In words, the divergence theorem says that the flux of a particular field quantity through
the boundary of a volume is equivalent to the net gradient or divergence of that field
within the same volume.

Exercise 1.5.7. For all vector fields v defined on a surface OR, show that

/ (curl v) -n dA = 0.
R

Finally we note that a common shorthand used to notate spatial derivatives (i.e.,
derivatives of some quantity A;jx. , with respect to some direction x4) within index
notation is to write

aﬂfq ijk...p,q>

replacing the derivative term with a comma after which comes the index corresponding
to the direction of differentiation. As a concrete example, it is commonly written that
aTU (X)

[div T(x)]; = 87@

Tijj-



2 Kinematics

In this chapter we discuss the kinematics of deformation, i.e. the mathematical
description of the deformation without any reference to material properties or other
material-dependent mechanical behavior. Consequently, the results we develop in this
section apply equally to any material we might consider. We will see later on that the
constitutive theories that do describe mechanical behavior — for example, the stresses that
are created as a result of deformation — necessarily rely on the kinematical description
of the deformation we develop here.

2.1 Motion and the Deformation Gradient

We consider a body occupying the “reference” configuration Rp at a given reference time
to.! We endow the reference system with a triad of basis vectors and an origin, such that
the material element at a location in this reference configuration is defined by a vector X
which references this origin.?

At a later time t > tg, suppose something has happened to the body such that it
now occupies a different configuration, R. We call this something a deformation. To
distinguish material elements in this deformed configuration we use a vector x. Now,
the mapping of elements x : X — x must be injective, because it cannot physically
happen that material elements collapse onto themselves or split apart as a result of
the deformation, and it must be surjective, because by construction the co-domain R
contains exactly the deformed material elements and nothing more.?

Therefore, there exists a bijective map formally called the motion function,

x = x(X,1),

which connects points in the reference configuration to their image in the deformed
configuration. The inverse map, sometimes called the reference map, is written as x .

Definition 2.1.1. The displacement u(X,t) is the difference between a material point’s
image at a particular time ¢ and its original location,

uX,t) =x - X.

Its first and second time derivatives, denoted 1 and 1, are called velocity and accelera-
tion, respectively.

!The reference configuration does not need to be a physical configuration taken up by the body at any
real time; the motivation is simply to construct a mathematically straightforward reference state
which then can be used to describe the body’s subsequent motion. On the other hand, the reference
configuration does not to be unique from any other configuration taken up by the body. For example,
we will encounter deformations that move material points relative to each other, but do not change
the overall three-dimensional volume occupied by the body.

2The use of X to indicate position in the reference configuration is standard, which unfortunately
conflicts with the convention of reserving uppercase Latin letters for tensors.

3Note here that we consider only a continuum description of the body which cannot describe events like
crack growth, void nucleation, and the like. We defer the description of these failure processes to a
later chapter.

19
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Definition 2.1.2. The deformation gradient tensor (or just deformation gradient)
F describes the deformation in terms of what happens to each basis vector,

Oz Oz Oz

0X1 0Xo 0X3

F = M — 8902 awz 8332
00X 0X1 0Xo 0X3

Oxs Jxs Ox3

0X1 0Xo 0X3

The determinant of F', which is one of its invariants, is denoted J. For valid deformations,
J > 0.

Definition 2.1.3. Similarly, the displacement gradient tensor (or displacement
gradient) is the tensor corresponding to the gradient of the displacement vector u,

~0x(X,t)

H= =—_"7 1
Vu X

The displacment gradient and deformation gradient are not independent. Rather:

Key Equation 2.1.4

The displacement gradient and deformation gradient tensors are related by
H=F-1

If they are (both) independent of X, the deformation is called homogeneous.

The tensors F (and H by relation) are so important because they completely define what
happens to one-, two-, and three-dimensional infinitesimal material elements, which are
fundamentally all defined by “material fibers”, or infinitesimal one-dimensional material
line elements. Specifically,

o The infinitesimal material line element dX becomes dx = FdX (also, dX = F~!dx).

« The infinitesimal area element npdAr becomes ndA = JF~"ngpdAr (Nanson’s
formula).

— This infinitesimal “patch” of area nrdAp is actually defined by its edge vectors
aand b (via ngpdA = axb), which each get mapped to Fa and Fb respectively,
so that ndA = Fa x Fb.

e The infinitesimal volume element dVg becomes dV = JdVx.

— Similarly, the infinitesimal volume element dVp is defined by three vectors a,
b, ¢ by the paralellepiped formula.

Exercise 2.1.5. Recalling that J = det F, show that
F”(Fa x Fb) = J(a x b),

from which Nanson’s formula follows.
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2.2 Polar Decomposition of F

We have seen that F acts by transforming material elements like dX to their deformed
configuration dx. To break down the action of the deformation, the polar decomposition
theorem is useful. (We are guaranteed a polar decomposition because we required the
determinant of F to be strictly positive.) Applied to F, we get the following important
result:

Key Equation 2.2.1

Given any deformation gradient tensor F, we can write
VR =F =RU

where the rotation tensor R is orthogonal, and the left stretch tensor V and
right stretch tensor U are both symmetric and positive definite.

The stretch and rotation tensors can be computed by

U = VFTF,
V = VFFT,
R=FU '=V'F

and consequently V.= RURT, i.e. V is just U having been transformed using the
rotation tensor R in the basis transformation formula.

It turns out that computing the square root of a tensor gets annoying, and we lose
no information in keeping the square, so we define the left and right Cauchy-Green
tensors as

B =V?=FF!
C=U%’=FTF

Notice that U and V, being the same tensor under a basis transformation, contain the
same eigenvalues, which we call A;. Let {r;} denote the eigenvectors of U. Note that the
vectors r; are associated with the reference configuration, because U acts first on a vector
dX before it is rotated by R to the deformed configuration. Then, again because U and
V are related by a basis transformation through R, the eigenvectors of V, {l;}, must
be related by {1;} = R{r;}. The vectors 1; are, therefore, associated with the deformed
configuration, acting on the vector RdX.
It then follows that

V=) NLeL U=> \Nror
B=> NL®l, C=> Nror
F:Z)\ili@)ri

7

R:1i®ri
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Remark 2.2.2: The spectral representation of the tensors above is useful to illustrate
the fact that F and R are called “two-point” tensors, as in the most general form
they transform vectors corresponding to the basis in the reference configuration,
{r;}, to vectors corresponding to the basis in the deformed configuration, {1;}. The
rotation vector R thus exactly specifies how the two bases may be related.

Correspondingly, the right stretch tensor U and the right Cauchy-Green tensor C
transform vectors within the basis of the reference configuration, and the left stretch
tensor V and the left Cauchy-Green tensor B transform vectors within the basis of
the deformed configuration.

Physically, R is always responsible for a rigid rotation of the material element. As their
names imply, the stretch tensors U and V are responsible for changing the length of
the material element, and possibly further changing its orientation (note that in general,
UdX is not parallel to dX). It is only material elements aligned with the eigenvectors of
the stretch tensors that undergo a pure stretch (i.e., change in length without rotation).
These material elements stretch precisely by A;, which are called principal stretches.

Recall that in the world of linear transformations, the order of their application matters.
To that end, while the total effect of applying the sequence VR is exactly the same as the
effect of applying the sequence RU (namely, F'), the “route” which a material element
takes is different in the intermediate steps. In the application of VRdX, the undeformed
element dX is first rigidly rotated to RdX. Then, it undergoes a stretch (and perhaps
more rotation as discussed above) to VRdX. In the case of the right stretch sequence,
the stretching part is accomplished first, followed by a rigid rotation of the now-stretched
UdX.

Finally, we note that because R simply rigidly rotates material elements, it is U (or
V) that contributes entirely to any elongation or contraction of material elements. Thus,
the fiber stretch A(m) in an arbitrary direction m is given by

A(m) = |[Um| or A =m- Cm,

the latter being typically easier to compute. Note that by the definition of an eigenvalue,
we recover the principal stretches when m is an eigenvector.

Similarly the angle change between material elements is likewise entirely attributed to
U or V, as the rotation tensor accomplishes only a solid-body (rigid) rotation. The angle
change is defined in terms of two material elements dX(!) and dX(?) that are mutually
orthogonal in the reference configuration (i.e., they are oriented in directions m; and mjy
such that m; - my = 0). After the deformation, the decrease in the angle between them is

— (new angle) = sin™" (m)

If the m; are chosen to be any two eigenvectors of U (i.e., any of the r;), then v = 0, i.e.
the triad of principal basis vectors never experiences shear.

-
T=5

Exercise 2.2.3. Consider the simple shear deformation given by

X :X1 +’}/X2
X9 = X2
z3 = Xs,

where v > 0 is a constant. Sketch the deformation of a unit cube (one corner at the
origin, and the other corner at (1,1,1)) under simple shear. Compute the tensors F, B,
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and V for simple shear. Compute J and show that simple shear is a volume-preserving
deformation.

Exercise 2.2.4. The simple shear deformation is volume-preserving, but the unit cube
occupies a different region of space before and after the deformation. Describe in words
or with a sketch a deformation which is not the identity, but where material elements
occupy the same volume in the undeformed and deformed configurations.

2.3 Strain: Finite Deformations

In general, strain is a measure of how much a particular deformation is different from
a rigid-body rotation. Of course, this information is already entirely contained in F or
equivalently H, which takes on the value I (or 0, respectively) when the deformation
is exactly a rigid-body rotation. Nevertheless a number of strain measures exist to
quantify this difference, all used in slightly different contexts, but all generally functions
of “descendants” of F like U.

Definition 2.3.1. The Biot strain tensor is defined as
E=U-1

Definition 2.3.2. The Green-St. Venant strain tensor is defined as

1
E=-(C-1),
S(C-T)
recalling that knowing C is enough to quantify the stretch in any fiber direction. This
definition is “nice” because the computation of C is easy, compared to U (eww, square

roots).

Definition 2.3.3. There are two (sometimes called “right” and “left”, respectively)
Hencky logarithmic strain tensors, defined to be

InU = Z(ln Ai) T @1

InV=> (In\)L®l.

2.4 Strain: Infinitesimal Deformations

When F is close to I, the resulting deformation is called infinitesimal (or, less precisely,
small). When this is the case, the preceding results can be linearized, i.e., the governing
equations can be expanded using something similar to a Taylor expansion, with terms
having quadratic or higher order then discarded.

A consequence of this is that the multiplicative stretch-rotation decomposition of
deformation we have seen before, e.g. F = RU, becomes an additive one. Specifically, in
the infinitesimal case, we work with the symmetric-skew decomposition of the displacement
gradient tensor H. In this limit, all of the previous strain measures collapse onto one,
which we call the infinitesimal strain tensor.

Definition 2.4.1. When |H| = |Vu| < 1, the infinitesimal strain tensor is defined
to be the symmetric part of H,

1 T 1
e=5 (H +H ) , €ij = 5(%]‘ + i)
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with the following components in terms of the displacement u(X) = (u1, ug, us):

Oug. L(ouw | Ouy L(ow | Ous
0X1 2 \ 0Xo 0X1 2 \ X3 0X1
[5} = Oug 1 ( Oua + Ous
8X2 2 8X3 8X2
symm. g—;g

With respect to the dimensions of the reference body, the entries in the infinitesimal
strain tensor have a nice physical description. The diagonal entries of the strain tensor,
for example 11, represent the change in length per unit original length of a line element
in that direction (for example, e1). The off-diagonal entries, for example €13, represent
one-half the change (decrease, if positive) in angle between line elements originally
oriented in those orthogonal directions (for example, e; and e3). Most generally, for
any two vectors a and b, the operation a - eb computes half the change in dot product
between a and b.

Exercise 2.4.2. AKG 1.15.

Remark 2.4.3: The off-diagonal components ¢;;, ¢ # j in the strain tensor are called
the tensorial shear strain components (cf. the diagonal terms which are called the
normal strain components). Confusingly, the engineering shear strain components
are defined to be twice the magnitude of the corresponding tensorial shear strain
components, v;; = 25, © # j. For example, in terms of u(X),

_ <8U1+3uz)
m=\ox, T ax, )

Counsider the Green-St. Venant strain tensor
1

= §(C - 1)7

where C = FIF and H=F —I. Then

E:%[FTF—I}
= [E+DTE LT -1
:%[(HTH+H+HT+I)—I]
:%(HTH+H+HT)

and when |H]| is small, the term H”H can be neglected, leaving us with the usual
infinitesimal strain tensor €. (A similar computation can be undertaken starting
with B, whereby the second-order term becomes HH instead.)
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The infinitesimal strain tensor admits a spherical-deviatoric decomposition,

1 1
e=¢e¢—=(tre)I + tr )l
el + S(re)
strain deviator &’ volumetric strain

where the strain deviator &’ records the part of strain responsible for shape change, and
the spherical volumetric strain records the amount of volume change. Specifically,

for infinitesimal deformations the local volume change per unit volume is
given by
tr e = Ekk-

This is exactly three times the number that appears in the diagonal
elements of the volumetric strain tensor.

(Actually, it turns out that the “linearized” version of J = det F is exactly 1 + tr €, so in
the limit of infinitesimal deformations these two measures of volume change are identical
in nature.)

It should be emphasized that the strain tensor can vary in space and hence describes the
local state of shape and/or volume change. If an infinitesimal spherical element undergoes
a deformation whose strain deviator is nonzero, it will no longer be spherical (i.e., it will
have changed shape). Conversely if the strain deviator is zero but the volumetric strain
is nonzero, the element simply dilates or contracts according to the value of egp.

Exercise 2.4.5. The matrix of strain components in a body, with respect to a basis, is

x 1073

el )

Consider a tetrahedron defined by points O(0,0,0), A(1,0,0), B(0,1,0), and C(0,0,1) in
the given basis, as well as point D(1/2,1/2,0) at the midpoint of edge AC'.
Calculate:

1. the normal strain (i.e., change in length relative to original length) of fibers OA, AC
and DB;

2. the change in angle between fibers BD and AC'; and

3. the volumetric strain (i.e., relative change in volume) of the tetrahedron OABC.

Remember that all vectors should be normalized to unit vectors.

Finally, observing that the infinitesimal strain tensor € corresponds to the symmetric
part of the skew-symmetric decomposition of H, we define the infinitesimal rotation
tensor to be the skew part. Namely,

Definition 2.4.6. When |H| = |[Vu| < 1, the infinitesimal rotation tensor is defined
to be

1 T 1
w=§<H—H ) wij = 5 (uij = uji)
The tensor w is skew-symmetric (w;; = —wj;), and thus its diagonal components are

zero. The three independent components w1, w1z, and wes can be coordinated with a
three-component vector? w = %curl u such that wm = w x m for all m.

4In particular, wis = —ws, wiz = wa, and waz = —wi.
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In general the tensor w quantifies the amount of local rotation at a given infinitesimally
small point. The magnitude |w| = |w| corresponds to the angle of rotation, and the unit
vector in the direction of w points out the axis of rotation.

Taken together, the strain and rotation tensors “break down” how a body changes
under infinitesimal deformation: H = € + w. For example, in the special case where
€ = 0 at a given point, the neighborhood of that point rotates like a rigid body.

Finally, it should be restated that a rigid-body translation, where u is a constant vector
(independent of position), does not contribute to Vu and thus does not contribute to €
or to w.

I Exercise 2.4.7. AKG 1.1, 1.2, 1.5.

Exercise 2.4.8. Describe in words a motion that produces a non-zero displacement
gradient tensor, but has no strain.

2.4.1 Compatibility

Given a displacement field u = u(X), it is straightforward to compute the strain field:
the components of [g] are given by e;; = 3(u;; + uj;).

However, a problem arises when we go in reverse. That is, given a strain field [e] with
the intent to solve for the original displacement field u, we are given a system with six
independent components (the €;;) but only three unknowns (the u;). Because there are
more constraints than unknowns, it is possible that a solution may not exist. Thus, to
guarantee that a given strain field “comes from” a displacement field, we need enough
additional conditions to guarantee the existence of a solution. These additional conditions
are called the compatibility conditions.

Remark 2.4.9: This situation is analagous to the observation that a given vector field
v(x,t) may or may not have a scalar potential function ¢(x,t), for which grad ¢ = v.
Given a vector field, a valid potential function only exists when the three compatibility
equations curl v.= 0 must be satisfied.

A non-rigorous physical interpretation of the compatibility requirement is that a valid
displacement field must not “break up” or “cause overlap between” elements in the
deformed configuration.

In two dimensions, where three strain components {e11,€22,€12} are given and two
displacement components {uj,us} are requested, the (one) compatibility equation is

€11,22 + €22.11 — 2€12,12 = 0.

Equivalently, if a given set of strain components {e11, 92,12} is compatible, than any
two out of the three equations

ouq

87331 =€11

Ous

87562 = €22
Ou  Ouy = 2¢12
8%2 8a:1

must yield the same values for u; and us.
The requirement that the three strain components satisfy the compatibility condition
is necessary and sufficient for the existence of a valid displacement field.
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Example 2.4.10

The matrix
1 (22 =2
el =12 <x§ 23

does not satisfy the compatibility equation in two dimensions, so it cannot be a strain
field. In other words, there is no displacement field u(z1, z2) = (u1 (21, 22), ua(z1, 22))
which could be differentiated to produces this “strain” matrix. However, the matrix

[s] —A (x% + x% x13202>

T1T2 x5

does satisfy the compatibility equations. Therefore, a displacement field u(z1, z2)
can be found, at least down to a constant of integration which represents a rigid
translation.

In three dimensions there are six compatibility conditions that must be satisfied. They
can be summarized as

curl(curl €) = 0, €ijkl T €klij — €ikjl — €1,k = 0
for 4,4, k,1 = {1,2,3} (no sums).

I Exercise 2.4.11. AKG 1.13, 1.14.



3 Balance Laws

In this section we discuss the global and local forms of the balance laws for mass, forces,
moments, and energy, which are again applicable to deformations without considering
their material or mechanical properties. These balance laws follow from physical principles
as applied to continua. For the majority of this section we will work in terms of the
deformed coordinate x, because the reference configuration is typically assumed to be
free of forces. Accordingly we will define an origin O from which we can take the vector
r to represent the directed distance between O and x.

3.1 Balance of Mass

The balance of mass requires that mass is neither created nor destroyed as a result of
deformation.

Key Equation 3.1.1 (Balance of mass)

If the mass density of the reference configuration is pr(X) and the mass density of
the deformed configuration is p(x),

pr(X) dVig = / p(x) dV
Rr R
from which it follows by localization that

p(x) = = pr(X).

3.2 Balance of Forces and Moments

In continuum mechanics, two classes of forces are assumed to exist at any point within
a body. The first class consists of forces that act on surfaces and are therefore defined
per unit area. These tractions are either due to internal contact forces, if the point in
question is on the interior of a body, or due to contact forces exerted by the environment
on the boundary of the body, if the point in question is on the exterior of a body. The
second class consists of forces that act on volumes and are therefore defined per unit
volume. These body forces are assumed to be from an external source, gravity being
the most common example.

Definition 3.2.1. The traction vector t(x,n) at a point x is the total surface force
per unit area acting on a section plane passing through x with outward-pointing normal
vector n. By convention, we take the normal vector to be pointing away from the region
of interest, so that this force per unit area is taken to be the force per unit area exerted
on the inside section from the outside section, where n points from the inside to the
outside.

Note that the value of t depends not only on the location x, but also on the choice of
section plane, as defined by n.

28
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Definition 3.2.2. The body force vector by(x) quantifies the total force per unit
volume acting at a point x from external (environmental) sources.

Remark 3.2.3: Some textbooks generalize the body force vector as
b(x) = by(x) — p1,

where the term pii is the inertial body force associated with acceleration in the body.

With this formulation, the balance of forces (or balance of linear momentum) for a
continuum is simply the requirement that F .. = ma, i.e. Newton’s second law. The
balance of moments (or balance of angular momentum) is analogously Newton’s second law
for angular acceleration, obtained by cross-product multiplying both sides of Fyet = ma
by the moment arm r. We commonly write these statements on a per-unit-volume basis,
so that the density appears instead of the mass.

Key Equation 3.2.4 (Balance of linear and angular momentum, global version)

The balance of linear momentum requires that

/ t(n)dA—i—/bOdV:/pﬁdV
OR R R

and the balance of angular momentum follows,

/ rxt(n)dA+/rxbng:/p(rxﬂ)dV
OR R R

Remark 3.2.5: In the special case where the acceleration term 1 is zero or negligible
compared to the external force and moment terms, the right hand side of (3.2.4)
vanishes and the resulting formulation is called the equations of equilibrium (and the
continuum is said to be in equilibrium).

3.2.1 Cauchy’s Result and the Stress Tensor

It can be shown that Newton’s third law, the law of action and reaction, applies to
continua in the following form, for all n:

t(x, —n) = —t(x, n)

Using this, the traction at a point in a direction n can be determined solely with n and
a tensor independent of n called the Cauchy stress tensor.

Key Equation 3.2.6

The traction t(n) at a point x is a linear function of n through the Cauchy stress
tensor T = T(x) evaluated at x:

t(x,n) = Tn
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Formally, the tensor T is defined as T = t; ® e; (yes, there is a sum over i here), where
t; stands for t(n = e;,x), i.e. the traction in the coordinate direction e;. Said another
way,

At a given location x, knowing the traction in the coordinate directions
{e;} is necessary and sufficient to determine the traction in any arbitrary
direction n.

The components T;; of the stress tensor can thus be read off as “the j-direction component'
of the traction on the i-face? of an infinitesimally small section-cut cube at the location
of interest, with the cube edges cut parallel to the basis vectors”. The local versions of
linear and angular momentum can now be stated in terms of T:

Key Equation 3.2.7 (Balance of linear and angular momentum, local version)

At every point x in the deformed body, the balance of linear momentum requires
that
div T+ b = pi =il

and the balance of angular momentum requires that

T=T" T;=T;

From the global balance of linear momentum,

/ t(n)dA+/b0dV:/pﬁdX/,
OR R R

we can use the definition of the stress tensor to replace the traction t(n) with Tn,
then use the divergence theorem to convert the area integral into a volume integral:

/ ’I‘ndA+/b0dV:/pi'1dV
OR R R

/dideV—i—/bodV:/pﬁdV
R R R

/(diVT—i—bo—pﬁ)dV:O
R

Since this is true for any R, it follows that, by localization, div T + bg — pii = 0.

A formal proof of the symmetry of the stress tensor can be carried out in a similar
method as 3.2.8, by cross-multiplying both sides by an arbitrary vector r. This proof
can be found in most standard textbooks or is left as an exercise to the reader.
For more practical purposes, here we give a proof of the same result but specalized
to an infinitesimal rectangular volume in a fixed rectangular basis. Specifically, we
aim to show that even if the rectangular volume is given arbitrary angular velocity

! Actually, because T is symmetric, the roles of i and j may be switched here.
2The i-face is the face with outward normal vector e;.
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and arbitrary angular acceleration, the tensor describing its stress state is always
symmetric. (In equilibrium, both of these values are specialized to zero, but here we
prove the more general result.)

To this end, consider the rectangular element shown in the figure; it has sides
oriented parallel to the coordinate system {ej, ey, es}, side lengths Az, Ay, Az, and
uniform density p > 0. One corner of the element is taken to coincide with the origin
O of the coordinate system.

It follows that the tractions on the edges are the components T;;, as shown in the
figure. (Thus far we have not assumed any properties of the stress tensor; only that
it exists.)
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We can apply the classical “angular Newton’s second law” (the principle of
conservation of angular momentum),

Mnet = IOt,

where M, is the net moment about any point, and « is the resulting angular
acceleration about that point. We will compute the moment about O in the e; — eo
plane; the other coordinate axes follow an identical result with a simple permutation
of the indices.

The net moment around the origin, counterclockwise positive, is

Myt = (To1AyAz)Azx — (T12AxAz)Ay = (Th — Tho) AzAyAz.

Meanwhile, the mass moment of inertia is

I, = i(pA:UAyAz)(A:U2 + Ay?) + l(prAyAz)(sz +Ay?),

where the second term comes from the parallel axis theorem. Hence the angular
Newton’s second law result is

(To1 — Tho) AzAyAz = gpa(AxAyAz)(Ax2 + Ay?)

7
(Tgl = T12) = ipOé(ALL‘Z + Ay2)
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Finally, in the infinitesimal case, where Ax — 0 and Ay — 0, the preceding result
yields
Tig = Th,

for any p and any «, the result we were seeking. Notice that the value of the
instantaneous angular velocity (say w) does not appear and hence the above result
holds for any w.

Taking moments in a similar way about the other (z- and y-) axes demonstrates
that T13 = T31 and Th3 = 139, which completes the proof.

Again, the special case of equilibrium (zero or negligible acceleration terms) results in
the simplified form
divT+b=0

of the linear momentum balance. Interestingly, the angular momentum balance is
unchanged. Recall that the statement of angular momentum balance can be satisfied
with or without external moments, and with or without any sort of rotation of the body.
Indeed,

As long as the angular momentum balance is satisfied, the stress tensor
T is symmetric, independent of any rotational velocity or acceleration.
The angular momentum balance is typically taken to be satisfied in most
realistic solid mechanics problems unless an exotic material model is
assumed.

Exercise 3.2.10. Prove each statement or provide a counterexample.

1. If the traction at a given point in a body (with well-defined normal vector) is zero,
then the stress tensor evalulated at that point is zero.

2. If the stress tensor evaluated at a point in a body (with well-defined normal vector)
is zero, then the traction at that point is zero.

3.2.2 Principal Stresses

Being symmetric, T admits a basis of eigenvectors {m;} and eigenvalues 7; for which
t(l’l = ml) = ']:‘1’1’1Z = 7;1N;,

i.e. the stresses in these special directions are entirely normal, with zero shear component.
These eigenvectors are called the principal stress directions, and the corresponding
eigenvalues 7; represent the principal stresses, or the normal stresses in these directions.
(Sometimes the principal stresses will be written 77 for clarity.) The principal stress with
the largest magnitude is usually called the mazimum principal stress and has important
applications in failure criteria, for example.

3.2.3 Spherical-Deviatoric Split of T

As with the small strain tensor, the stress tensor T admits a physically meaningful
spherical-deviatoric decomposition. Namely,

1 1
T = T—g(tr I + g(tr )1

~—_—— ———
stress deviator T’ volumetric stress
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where the stress deviator T’ quantifies the part of the stress state that acts to change
the shape of the body. The volumetric part of the stress is the tensor which has zeros in
the off-diagonal components and (1/3) tr T in the diagonal components; this scalar is
called the negative of the mean normal stress. Note that the mean normal stress is
defined this way so that a compressive mean normal stress is positive. In the special case
where T/ = 0, the stress state is said to be hydrostatic. For example, a fluid at rest
experiences a hydrostatic stress state.

3.2.4 Referential Stress Measures: Piola Stresses

Sometimes it is useful to record the stress state in the deformed configuration with regard
to the body’s reference configuration. This is analagous to the concept of engineering
stress, in contrast to true stress. From Nanson’s relation, n = JF ng and we can define
the first Piola stress as

P=JTF T

3

Thus, P catalogues the stress per unit reference area®, and

PnR dAR = / Tn dA.
ORR OR

The balance of linear and angular momentum can then be expressed in terms of the
referential variable X = (X1, X5, X3) as

Div P + br = pr¥
PFT” = FP”

where br = Jb is the body force per unit reference volume. The divergence operator is
written with a capital letter here to indicate that it is taken with respect to the referential
variable X, not x as before.

Observe that the first Piola stress is not symmetric. To “fix” this problem we define a
symmetric second Piola stress as?

S=F'P=JF 'TF 7.

Remark 3.2.11: Recall that F is a two-point tensor which transforms vectors from
the reference configuration basis to the deformed configuration basis. The first Piola
stress P is likewise a mixed-basis tensor which transforms vectors from the reference
configuration basis to the deformed configuration basis. Conversely, the second Piola
stress S stays within the reference configuration basis, and the Cauchy stress T stays
within the deformed configuration basis.

Specifically, suppose we use the basis {e;} in the reference configuration and the

30bserve that P has a mized basis, since it maps normal vectors in the reference configuration to traction
vectors which exist only in the deformed configuration.

“In contrast to P, the symmetric S maps tensors in the reference configuration to tensors in the reference
configuration.
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basis {€}} in the deformed configuration. Then we may write

F= Fz’je; R ej,
P = Pje; @ ej,
S = Sije; ® ey,
T = T;je; e},

Note that F;; = €] - Fe;, and so on. This emphasizes that F acts on vectors in the
basis {e;} and maps them to vectors in the basis {€,}. The principal basis of the
reference configuration is represented by {r;}, and the principal basis of the deformed
configuration is represented by {i;}.

I Exercise 3.2.12. AKG 1.16, 1.19, 1.22, 1.26 through 1.30.

3.3 Balance of Energy (First Law)

The first law of thermodynamics expresses the statement of conservation of energy.
Specifically, it equates the rate of change of internal and kinetic energies within the body
to the rate of heat transfer to the body, and the mechanical power (from tractions and
body forces) expended on the body. We define the following energy variables:

o The specific® internal energy is &,,(x,t), so the net internal energy is
Er = / pem dV

R

e The kinetic energy is
1
Kr = [ el v

R 2

e The total heat flow into R is

QR:/ —q-ndA+/ rdV,
OR R

where q(x,t) is the heat flux into R across the boundary OR (the negative sign is
used here because n is the outward-pointing normal), and r(x,t) is a scalar field
representing the volumetric heat supply from sources far from R, such as radiative
sources.

e The external power expended on R due to tractions and body forces is

Wext,R:/ Tn-l'ldA—l—/ b-adV
OR R

Key Equation 3.3.1
With the definitions above, the first law of thermodynamics says that globally,

0 0
&572 oty &K’R - QR = Wext,R7

5 . .
°meaning per-unit-mass



3 Balance Laws 35

with the local form
O0&m

pW:TD—dIVq‘i_T,

for
1
D = sym L = sym grad u, D;; = i(ui’j U ’llj,i),

i.e. the rate of deformation tensor D is the symmetric part of the velocity gradient
tensor L = Vu.

With regard to the referential formulation, it can be shown that
. 1 .
/ T-DdV = P~FdVR:/ 28 G dVe (%)
R Rr Rr 2

In the reference configuration, we call the pairs (P, F) and (S, (1/2)C) work-conjugate.
Moreover, the quantity expressed by the equation (x) is called the stress power.

3.4 Imbalance of Entropy (Second Law)

The second law of thermodynamics says that the entropy in a system is never decreasing;
that is, it is either constant or increasing (when a part of the system is creating entropy).
We define the following entropy variables:

o The specific entropy is 7, (x,t), so the net entropy is
Se= [ pmdv
R

e The total entropy flow into R is

jR:/ —j~ndA+/jdV,
OR R

where j(x,t) is the entropy flux into R across the boundary OR (the negative sign
is used here because n is the outward-pointing normal), and j(x,t) is a scalar field
representing the volumetric entropy supply from sources far from R.

o The absolute temperature 6(x,t) > 0 is a strictly positive scalar field which relates
entropy and heat flow by

and j=

;-4
0

r
7

Key Equation 3.4.1

One statement of the second law is that the rate of change of the net entropy 0Sg /0t
must be equal to or greater than the total entropy flow Jx, which leads to the global
statement

8/ . . q r
g —-ndA—i—/ dvz/ ——-ndA—ir/de,
ot Jor ! RJ or 0 R0

with the local form 5
TIm . q r
Zim - = ).
p@t > d1v<9>+<0)
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3.5 Dissipation (Free-Energy Imbalance)

The specific Helmholtz free energy ,,(x,t) is a measure of the useful work in a
system at a constant temperature 6. It is defined in terms of the specific internal energy
em and specific entropy 7, as

U (X,t) = e (X, 1) — O (X, 1).

Using this definition, the first and second laws can be combined into a statement of
free-energy imbalance, which allows us to define the dissipation.

Key Equation 3.5.1
On a per-unit-mass basis, an expression of the free-energy imbalance is that

00 1 OVm
DET-D—pnma—éq-gradH—pW20.

In the special case where the temperature field is constant in space and time, i.e.
0(x,t) = const., the influence of thermal factors is negligible and the theory is said
to be mechanical. In this situation the free-energy imbalance simplifies to

DET~D—p88wthO.

In the referential formulation, the mechanical free-energy imbalance can be rewritten as

: O 1. O
Dr=P -F—pp—=S--C—prp—— >0,
R PR ot 9 PR =
where g is the specific free energy in the reference configuration, i.e. the free energy
per unit reference mass. The quantity prir can be taken together to define ¥R, the free

energy per unit reference volume.

Remark 3.5.2: In the case of small deformations, we may replace the rate-of-
deformation tensor D with €, the time derivative of the small strain tensor. Moreover,
we may assume that the density p is independent of time, so that it may be com-
bined with the per-unit-mass quantities €,,, 7., and 1, to arrive at per-unit-volume

quantities € = pey,, N = PNm, and Y = pY,.
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An elastic material is taken to have the following properties:

4.1

The stress P at a reference position! X in the material depends only on the
deformation of the material elements in the immediate neighborhood of that
position. Namely, the stress only depends on F, which entirely characterizes the
local deformation at every position.

The stress does not depend on the rate of deformation. That is, it does not depend
on any time derivatives of F.

The stress at a given time t depends only on the value of F at that time, and not
on the history of the deformation.

The material does not dissipate energy. Specifically, the rate at which external work
is done onto the body (i.e., the stress power) exactly equals the rate of increase
of stored energy in the material (plus the rate of increase of kinetic energy if the
accelerations are non-negligible).

Finite Elasticity

In this section we are concerned with elasticity for finite (cf. infinitesimal) deformations
as described by the deformation gradient tensor F. From the last of the properties of an
elastic material described above, we can express the dissipation inequality instead as an
equality,

_p.p_ % _

We further assume? that the free energy function depends only on F, so that

YR = r(F).

It can be shown that these two results yield the following important relationship between
Ygr, F, and P.

Key Equation 4.1.1

In an elastic material, the stress response is fully determined by the free-energy
function and the current value of the deformation gradient,

Materials that obey this property are also said to be hyperelastic.

T
OF _J8FF

Tt will be convenient for us to work in terms of a referential description; however, the “conversion rules”
between P and T, and between X and x, can always be used as long as F is known.

2This assumption is justified by the requirement that the material response can only depend on the
current kinematic state of the body, which is fully defined by by F.

37
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Consequently, characterization of an elastic material simply boils down to finding an
appropriate free-energy function. We can further restrict possible forms for this free-energy
function using physical arguments.

By the principle of material frame indifference, the free energy function is a physi-
cal quality of a material’s deformation and hence cannot change with a rigid motion.
Mathematically, ¥ r(F) = ¥ r(QF) for all orthogonal Q. This turns out to be equivalent
to the requirement that g (F) = ¢)5(C), where C = U2 = FTF. In words, this addi-
tional requirement says that the free-energy function can only depend on the stretching
component of the stretch-rotation decomposition of deformation. Therefore, we can write

OVr _2_0YR

_ opYYR _ fpYYRar
P—2Fac = T 7 aCF.

This is the most general form of the elastic constitutive relation that we can write
which holds for all hyperelastic materials. Any further specialization depends on material
symmetry, which is a physical attribute of a specific type of material. Fortunately, many
everyday materials exhibit some amount of material symmetry, which simplifies the
formulation of their free-energy function. Let us first make precise what we mean by
material symmetry.

Definition 4.1.2. A material symmetry transformation is a rotation of the reference
configuration that leaves the pointwise (free-energy, and therefore stress) response to
deformation unaltered.

4.1.1 Isotropy

Many engineering materials are isotropic, which fortunately simplifies their constitutive
treatment.

Definition 4.1.3. An isotropic material is a material for which every rotation is a
material symmetry transformation,

Pr(QTCQ) = Yr(C)

for all orthogonal Q. A special case of this is the rotation which transforms C to B,
namely R. For isotropic materials, it follows that

Yr(C) = Yr(B).

Therefore, for isotropic materials it can be shown that

g 2 0
P=2—F — T=-—8B.
0B J 0B
Moreover, T and B have the same principal directions 1;.

Next, for isotropic materials, the free-energy function can be shown to only depend
on the invariants of B (or equivalently, only on the invariants of C). For the ease of
notation we define R

R

i =
olI;
for the invariants® I, I, I3 of B or of C. Then, computing (81$R/6B) in terms of
invariants gives

P = 2F [I;¢5C " + [ + Tl — 42C]|

2 2
T =2JYs3I + j[% + I192|B — j%BZ-

3Recall that J = /T3.
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Finally, we can express the free-energy function ¢ in terms of the principal stretches A;
of U and V (recall that the eigenvalues of B and of C are A\?),

VR = r(\).

This is useful because it allows us to write the spectral decomposition of the resulting
stresses in terms of these principal stretch values. Namely (dropping the decorators above

¢)’

Key Equation 4.1.4 (Isotropic elastic material)

For an isotropic elastic material, the stresses are related to the principal stretches by

P—i(awR> L ®r; (no sum on 1)
= L 8)\1 ) [

3
= Ai YR\ . o |
T_;(J 8)\Z>1Z®1'L (IlO sum on Z)

It is thus possible to read off the principal Cauchy stresses (the principal values of
T) as
I = ()\i 81/)3) (no sum on 1)
! J O\ i

If the deformation is pure homogeneous strain, R = I and the bases {1;} and {r;}
coincide, making P symmetric. In this case the principal values of P can be read off

as well to be
(3
! oN )

4.1.2 Incompressibility

Definition 4.1.5. An incompressible material is one for which every deformation
preserves volume. That is, for all admissible deformation gradients F,

J=detF =1.

It follows that for incompressible materials, det B = det C = A\; Ao A3 = 1. The following
observation about incompressible materials underlies the formulation of an appropriate
free-energy function:

If a material is isotropic and incompressible, the addition of a purely
hydrostatic stress to any existing stress state does not alter the internal
energy of the material. Equivalently, the stress components associated
with a hydrostatic pressure do not contribute to the stress power.

It is important to note that the stress components associated with a hydrostatic pressure do
not contribute to the stress power because they do not cause deformation. The hydrostatic
pressure components do alter the material’s state of stress, and because of this the
expressions for the stress tensors must include an extra hydrostatic term.
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Remark 4.1.6: As a simple thought experiment, consider a sphere made of an
isotropic, incompressible material. The addition of a hydrostatic state of pressure
cannot result in a deviatoric deformation (i.e., for the sphere to deform into a
non-spherical shape) by symmetry, and it cannot result in a dilatation or compaction
by incompressibility. Therefore the deformation must be identically zero.

For any incompressible material, let p(x,t) be a scalar field corresponding to an
arbitrary hydrostatic pressure. Then

_ OVYR 2 _O0Yr
T _ T
P=-—pF " + 2F73 = T =—-pl+ jFia F,

where the negative sign is conventional to indicate a compressible pressure. In terms of
the invariants of B, we also have

T = —pI + (201 + 21119) B — 29, B?
= —pl + 21 B — 2y,B !,

where we use the notation ¢; = 0ir/0I; as defined above.

Key Equation 4.1.7 (Isotropic, incompressble elastic material)

For an isotropic, incompressible material, the stresses are related to the principal
stretches by

3
Pzz<5¢3_p> L, ®r;  (no sum on %)

S\ N
3
T= Z ()\i (?ﬁ\R — p) L®l (no sum on 1)
i=1 i

It is thus possible to read off the principal Cauchy stresses (the principal values of
T) as

_ (%R :
T = <>\Z o, p> (no sum on 7).

If the deformation is pure homogeneous strain, R = I and the bases {l;} and {r;}
coincide, making P symmetric. In this case the principal engineering stresses (the
principal values of P) can be read off as well to be

o — <5¢R B p>
‘ N N/

Moreover, in this case the principal Cauchy stresses 7; are related to the principal
engineering stresses o; by
T = \iOj.

The existence of this “arbitrary pressure field” has two important physical interpretations.

In an incompressible, isotropic material:

1. An undeformed body may still be experiencing a hydrostatic state
of stress.
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2. In a deformed body, the stress is permitted to have an arbitrary
extra pressure whose value is independent of the deformation.

In all conditions, traction boundary conditions are required to determine
the pressure p.

4.2 Free-Energy Functions for Incompressible Materials with
Finite Strain

This section compiles a few typical examples of specialized free-energy functions for
incompressible materials capable of attaining large, finite strains, typically elastomers.
The free energy functions are most often specialized in terms of the principal stretches
(A1, A2, Az), with the incompressibility constraint \jA2A3 = 1 for all deformations. Al-
ternatively, they may be specified in terms of the principal invariants I, Is, I3 of B or
equivalently of C,

I=X+ 24+

= N2+ NN N2 = A2 2+ 02

Iy = M2 = 1.

1. The Neo-Hookean free-energy function has one parameter, the shear modulus
o > 0:
Ho
YR = 7(11 - 3)7

and the principal values of the Cauchy stress are
Ti = HoA; — p

2. The Mooney-Rivlin free-energy function has two parameters, C7 > 0 and Cy > 0:

vn= 0 -9+ 2 -9),

and the principal values of the Cauchy stress are
i = O10\? — G\ 2 —

3. The Ogden free-energy function generalizes the two-term Mooney-Rivlin model
to contain M terms. It takes 2M parameters of the form u, and «,, for r =
1,2,3,...,M:

E 13

M
Z:u )\ar_'_)\a,«_'_)\aqn_?))

with the constraints that (1) for each r, pra, > 0 (no sum over r), and (2)

M

Z por O = 210
r=1

where pp is the “ground state” shear modulus (i.e., the shear modulus of the
material in the undeformed stress-free configuration). The principal values of the
Cauchy stress are

M
T = ZM,«)\?" —-p
r=1
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4. The Gent free-energy function incorporates the physical concept of a locking stretch,

which represents a finite value of I; (and consequently a finite value for the \;)
where the polymer chains are all extended to their limit, and consequently a further
stretch is accompanied by a dramatic increase in stress. (The previous models
fail to account for the locking stretch phenomenon and as such do not fit well to
experimental data at large stretch values.) The Gent model takes two parameters,
the shear modulus po > 0 and the stiffening parameter I,,, > 0, which limits* the
maximum possible value of Iy:

0 I —3>
=——I,In(1-—
Yr g 'm Il< I,

Under the Gent model, the Cauchy stress is given by

e

. The Arruda-Boyce free-energy function also models the locking stretch phe-

nomenon as motivated from statistical mechanics of polymer chain entropy. This
model takes two parameters, po and A\ (the network locking stretch):

(5074 ()|

A 1 3u—ud
_ 1A — e
6=L <)\L> , L(u) = coth(u) ” [

VYR = o\

with

and \ the root-mean-square average stretch:

A

M+M+A L
3 3

Under the Arruda-Boyce model, the Cauchy stress is given by

() ()]

T =—pl+

Remark 4.2.1: In the Gent and Arruda-Boyce models, the Cauchy stress may be
rewritten as
T = —pl+ 4B,

where u represents a generalized shear modulus, which in each case is a function of the
principal stretches in such a way that the stress grows without bound as the stretch
increases, reflecting the chain locking phenomenon. If we take p = pug = const., we
recover the Neo-Hookean model, which does not account for chain-locking.

arguments and empirical data; the reader is encouraged to consult the vast body of

Many other free-energy functions have been formulated on the basis of physical

literature in this regard.

4Specifically, Iy < Im + 3. As I1 — I, + 3, the stress increases without bound, which models the

dramatic stiffening seen in experiments.
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I Exercise 4.2.2. AKG 6.1 through 6.5, 6.8 through 6.11.

Exercise 4.2.3. Consider again the simple shear deformation; recall the deformation
gradient is
F=1+ Y€1 ® €2,

where v > 0 is a constant. Compute the tensor B for this deformation and list the principal
invariants of B. Given the form of B, one would likely expect that a nonzero shear stress
T}, is required to sustain this deformation. If the material is made of an incompressible
Mooney-Rivlin material, show that two nonzero normal stress components are required
in addition to the Ty shear stress component in order to sustain the deformation. If the
material is made of an incompressible Neo-Hookean material, show that only one nonzero
normal stress is required. What is the difference between the mathematical formulation of
the two material models?

4.3 Linear Elasticity
In the special case where the deformation is close to the identity,
F~I = |H|<1,

the form of the free-energy function may be simplified. In this situation, the tensors
governing deformation and stress may be linearized, i.e., they may be Taylor expanded
and terms with order higher than one may be neglected. Following linearization,

o the reference and deformed configurations are sufficiently similar that we no longer
need to refer to them separately, and specifically 0(-)/0x; = 0(-)/0X;;

o the first Piola stress P and the Cauchy stress T are identical, and we can denote
this common stress by the symmetric tensor o; and

o the rate of deformation tensor D is equal to the time derivative of the small strain
tensor, €.

Thus, the dissipation equation, which is the combined statement of the first and second
laws of thermodynamics in an isothermal case, can be written as

_ L
D=c- ¢ 87—07

so for a scalar free energy function of the assumed form 1 = 1 (e) we have

_ ov(e)
Oe

To write down a particular form for ¢ (e), we again turn to the Taylor expansion of 1
about € = 0. In the linear theory, it is sufficient to keep the first non-zero term of this
expansion. We assume that when € = 0, the body is stress-free, and without loss of
generality we set the scale for ¢ to be zero in this state as well. Then, the first non-zero
term in the expansion is the quadratic term. We arrive at the following form of the
free-energy function:
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Key Equation 4.3.1
When the deformation is infinitesimal,

Y (e)
Oe '’

g =

with the first non-zero Taylor expansion term yielding

82
p=g s

= — EpaErs = =CrorsEpgers = —€ - Ce
2 OepgO€rs | .—g P4 o ~ParsTRITT 2

where C is the symmetric, positive definite fourth-order tensor that maps the second-
order tensor € to the second-order tensor o, i.e.

o =_Ce Oij = Cijklfkl

The elasticity tensor C is sufficient to characterize the stress field given the infinitesimal
strain field associated with a small deformation.

Remark 4.3.2: It appears that there are 3* = 81 entries in the tensor Cijki- However,
by the symmetry of the second partial derivative from which it is defined, C has the
magjor symmetry Cpgrs = Crspq. Moreover, because o;; and ey, are both symmetric
themselves, C has the minor symmetries Cpgrs = Cyprs and Cpgrs = Cpgsr. Taken
together, there are at most 21 independent components of C. This corresponds to
an arbitrarily anisotropic linear elastic material.

The linear mapping C is a bijection, so it has an inverse, called the compliance tensor
which is denoted by S, for which

1
€ = So; "Lngd'SU.
The compliance tensor is also positive definite and possesses the same symmetries as C.

4.3.1 Elasticity Tensor with Material Symmetry

In the most general case of complete anisotropy, there are 21 independent components of
C (see Remark 4.3.2). However, many real materials exhibit some amount of material
symmetry, which allow the number of independent constants to be reduced. For linearly
elastic materials, the definition of a material symmetry transformation specializes in the
following manner:

Definition 4.3.3. For linearly elastic materials governed by the elasticity tensor C, an
orthogonal tensor Q represents a material symmetry transformation if and only if

Cijkl = Qinijkr le Cpqrs .

In words, this says that if the components of C do not change after the basis change
associated with a rotation Q, then Q represents a material symmetry transformation.
Different types of symmetry are characterized by the tensors Q (which may represent
reflections or rotations) which are material symmetry transformations for a given unit
cell.
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Example 4.3.4 (Cubic material symmetry)

The following Q are material symmetry transformations for a material with cubic
symmetry: the reflections

1 0 0 1 0 O -1 0 0
01 0/, 0 —1 0f, 0O 1 0
00 -1 0 0 1 0 0 1
and the rotations
0O 1 0 0 0 1 1 0 O
-1 0 0], 0 1 0f, 0 0 1
0 0 1 -1 0 0 0 -1 0

In words, a material has cubic symmetry if it has three orthogonal planes of reflection
symmetry, and three axes of 90°-rotation symmetry. As a result, the number of
independent constants falls to just three,

[C1111 Criz2 Cri22 0O 0 0
Cii22 Cuunn Criz2 0O 0 0
€] = Cii22 Criz2 Criin O 0 0
0 0 0 C1212 0 0
0 0 0 0 Cigs 0
O 0 0 0 0 Cuon

If the material is isotropic, then any orthogonal Q is a material symmetry transformation

and the constitutive relation has the following special form:

Key Equation 4.3.5
For an isotropic linear elastic material,
o =Ce =2ue+ Atre)l
with u and A the only two independent material constants, which are generally called

the elastic moduli. The positive-definiteness of C requires that

2
w >0, HE)\+§N>O.

The following alternative form of the constitutive relation in terms of the deviatoric
strain €’ = e — (1/3)(tre)I is also useful:

o =2ue’ + k(tre)l

Finally, the following inverted form gives the strain in terms of a known stress state:

1, 1
=o'+ —(tro)l
€ QMU —|—9H(ro')

In particular, p is called the shear modulus and k is called the bulk modulus.
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Exercise 4.3.6. Starting with the isotropic linear elastic constitutive relation
o =2ue’ + k(tre)l,

derive the inverted form 1 |
=—0o' + —(tro)L
€ 2/¢U + 9/{( ro)

Remark 4.3.7: The definition of the shear modulus is motivated by the simple
shear test, for which e = 7(e; ® ea + e2 ® e1) is prescribed and correspondingly
o= (7/2)(e1 ® e2 + e2 ® e;) is measured. In this case pu = 7/7.

Similarly the definition of the bulk modulus is motivated by the (slightly-harder-
to-perform) wuniform compaction test, for which e = (—A/3)I is prescribed and
correspondingly o = —plI is measured. Then k = p/A.

The stress state o0 = ce; ® e in a simple tension test for which the corresponding strain
state is € = ce; ®e; +1(ea®@er +e3®e3) motivates the definition of the elastic modulus
FE and the Poisson ratio v such that for this test,

and V= ——.
€

p=2 :
g

Namely, in terms of the shear modulus and bulk modulus,

9 3k —2 1
= ki >O, —1<VEU<7
3K+ 1 6k +2u 2
or inversely
E E

= —— R= ———.
F=sa+oy 3(1— 2v)
With these definitions we can rewrite the isotropic linear elastic constitutive relation in
another common form:

Key Equation 4.3.8

For an isotropic linear elastic material,

with the inverse relationship

1

=% (14 v)o —v(tro)I].

€3

Remark 4.3.9: The special case of an incompressible linearly elastic material corre-
sponds to

1
K — 00, V—>§.

The practical significance of this formulation is that materials can be modeled as
nearly-incompressible whenever they are relatively easy to distort compared to shape-
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change; mathematically, this occurs when the ratio of material properties u/k < 1.
For example, rubber has p/k ~ 1074,

I Exercise 4.3.10. AKG 2.1, 2.5, 2.19 through 2.31.

4.3.2 Remarks on the Physical Basis of Rubber Elasticity

As discussed above, rubber is commonly modeled as an incompressible material due to the
ratio of its shear modulus to its bulk modulus being much smaller than unity. Physically,
rubber consists of a network of polymer chains: individual chains of covalent bonds
linking individual backbone units, called monomers, together. These polymer chains
are both crosslinked (meaning that occasional covalent bonds form across chains) and
physically engangled; moreover, nearby monomers experience van der Waals interactions.
This complex network of polymer chains is commonly described by the analogy of a bowl
of cooked spaghetti.

In the case of rubber, these polymer chains are indeed so tightly volumetrically packed
by nature of their flexibility that it is quite difficult to further compact them. However,
relative to the effort required to compact them, it is very easy to force chains to glide
against one another, which is exactly what happens in shear. For this reason, we
generally observe that in rubbers, u < . This is thus the physical argument for the
incompressibility assumption.

Another curious phenomenon is that the elasticity in rubber chains is due to entropy,
in stark contrast to the elasticity in a metal which is due to bond stretching®. Specifically,
in the absence of external forces, the natural equilibrium state of a rubber specimen is
that which aims to maximize the total entropy of a system, and perturbing this specimen
away from this state (e.g., by pushing, pulling, or applying another external force) causes
a decrease in entropy. The desire of the system to “re-maximize” its entropy gives rise to
an elastic restoring force, which we observe as an apparent stiffness.

Being due to an entropic effect, the shear modulus of a rubber is therefore also
dependent on the ambient temperature. In general,

w=a(T) x NkgT,

where N is the average number of chains per reference volume, kg is Boltzmann’s constant,
and T is the temperature in absolute units. This is why rubber components are often
stiffer on a hot day compared to a cold day! (Recall that the modulus of metallic or
ceramic materials typically decreases with increasing temperature.)

Example 4.3.11

Consider the following simple experiment: a 1 kg weight is placed atop a rubber
pad at an ambient temperature of 25°C. Suppose the temperature of the setup is
uniformly increased to 60°C. We would then observe the weight moving upwards
from its initial position, because the rubber would stiffen and therefore displace less
from its original amount.

5See chapter 22 of AKG for a more detailed treatment of the entropic elasticity phenomenon.



48 Solid Mechanics

4.3.3 Two-Dimensional Problems
Long Cylindrical Bodies: Plane Strain

In the case of a long cylindrical® body for which one length dimension (without loss of
generality, in e3) is much much larger than the other two length dimensions (in e; and
e2), commonly admits a plane strain deformation in which the displacement field in
the long dimension is negligible compared to the other two. Thus,

u(x) = (ul,uQ,O) — €13 — €93 — €33 = 0

and if the material is isotropic,

K
14w

1 1+v

v
Tap apt 15 Enas )y Cap = 5(Uap tUsa) =~ (0ap — v0330as)

where the Greek subscripts are only allowed to be 1 and 2 (and hence e, = €11 + €22).
The stress components in the long direction is

013 = 093 = 0,033 = V(011 + 022).

The stress and strain tensors have at most the following nonzero components:

o1 o122 0 €11 €12 0
o] = |o12 022 O |, [e] = |e12 €22 O
0 0 33 0 0 0

Thin Cylindrical Bodies: Plane Stress

In the case of a short cylindrical body, with one length dimension (again assume this
to be e3) much much shorter than the other two, it may happen that the traction
components pointing in the lateral directions are negligible compared to the in-plane
tractions. This situation is called plane stress. In this special case, the stress tensor
has zero components in the direction 3, i.e. 13 = 093 = 033 = 0.

If the material is isotropic,

E v 14+v v
Oap = 1+v (504/3’ + l_ljevvéoﬂ) ) Eaff = “E (Gaﬁ - I_H/JW’Y(SOZ,@> :

The strain components in the long direction are

1—

€13 = €23 = 0,€e33 = V(511 + €22).

The stress and strain tensors have at most the following nonzero components:

o1 o2 0 €11 €12 0
o] = |o12 022 Of, €] = |e12 €2 O
0 0 0 0 0 e33

In both plane strain and in plane stress, the (two) equations of equilibrium read
0ag,g+ ba =0,

for a two-dimensional body force vector b = (by, bs, 0).

A shape is cylindrical if it can be created by the extrusion of a 2D profile into the third dimension.
The profile, which becomes the cross-section of the body, need not be circular.
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I Exercise 4.3.12. AKG 2.6 through 2.8.

4.4 Mixed Problem of Elastostatics

When the accelerations of a body are negligible, the balance of forces and moments
reduces to the equilibrium equations. In this case, the mixed problem of elastostatics
can be stated in the following manner. Essentially, this is the broadest form that will
generalize all specific problems in elasticity.

Given a body filling a region R with boundary R having:

o complementary subsurfaces S; and Sy such that S; NSy =0 and §; U Sy = IR;
e a free-energy function g, which can describe linear or non-linear behavior;
 a body force distribution b(X);

e and boundary conditions

where the “hat” vectors @ and t represent prescribed displacements and tractions,
respectively;

we wish to find:

¢ a displacement field u;

e a deformation field F, which may be specialized to &, or expressed in terms of
another tensor with which F has a one-to-one relationship;

o and a stress field T (or S, etc.), which may be specialized to o, over R;

that satisfy the field equations. In the case of the linear theory, the field equations have
the form

5 =1 (Vu + (Vu)T>
o = Ce
dive+b =0

It can be shown that the solution, i.e. the set {u,e,o}, is unique, except in the case
where no displacement boundary conditions are specified. In that special case any two
solutions can differ at most by a rigid displacement.

Moreover, in the linear theory, linearity can be exploited in the form of superposition.
This means that

for linear problems, the solutions to some simple problems can be com-
bined to generate solutions to more complicated problems.

The linear superposition principle is stated as follows:

Key Equation 4.4.1 (Linear superposition principle)

Suppose the set {uj,e1,01} is a solution to the mixed problem of elastostatics
corresponding to a body force by, prescribed displacements iy on &1, and prescribed
tractions t; on Sz, and suppose the set {ug, 2,02} is a solution to the mixed
problem of elastostatics corresponding to a body force bs, prescribed displacements
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iz on S;, and prescribed tractions ty on Ss.
Then, the set {u =u; +ug,e = €1 +€9,0 =01 +03} is a solution of the problem
with body force b = by + by and boundary conditions

u =10; + G on Sy,
Tn :f:1+f20n52.

4.5 Elastic Wave Propagation

In this special section we will look at one of very few cases in solid mechanics where
the acceleration is non-zero (or non-negligible)”. Specifically we are concerned with the
propagation of elastic waves, which are often pressure waves in elastic bodies. In all cases
we will assume that the amplitudes of displacement are small, so that the linear elastic
relations apply. The vector equation of momentum balance with a non-zero acceleration
term reads

div o = p1,

and in particular we are interested in displacement solutions of the form
2w
u(x,t) = asin {/\(x ‘n— ct)] ,

where a is the displacement amplitude vector, c is the wave speed, and X is the wavelength.

Definition 4.5.1. If the body is long in one dimension such that u(x,t) = uy(z,t) on a
region x > 0, such that the only nonzero stress component is 011 = Fe11, and the nonzero
strain components are €11 and 92 = €33 = —veq, then the solution is (approximately)
called a bar wave and the governing equation simplifies to

82u1 1 8271,1 FE
—_— =, cg =/ —.
o3 & 0 B p

Definition 4.5.2. If the body is infinitely wide in two dimensions (a half-space) subject
to a time-varying but spatially uniform pressure loading, the displacement field is again
u(x,t) = ui(x1,t), but there are three nonzero stress components, namely 011, 022, and
os3. Here 099 = 033 = /(1 — v)o11. The governing equation for such a longitudinal

wave is
Puy 1 0% K+ 3G
= — , cL, =\ ———.
ox3 2 O L p

Remark 4.5.3: In seismology, longitudinal earthquake waves are called “P waves”.
The crust of the earth is essentially an infinitely-wide half-space and thus supports P
waves and shear waves (introduced below; also called “S waves”). Because P waves
travel faster than S waves, the signal from a P wave is often the first notification of
an earthquake. To this end, in seismology the quantity K + %G is sometimes called
the “P-wave modulus” and denoted M. (We will not use this terminology here.)

TAnother common case of non-zero acceleration occurs for bodies spinning at a constant rate, where the
centripetal acceleration must be accounted for in the equilibrium equation
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Definition 4.5.4. If the body is infinitely wide in two dimensions (a half-space) subject
to a time-varying but spatially uniform shear loading (say, parallel to the es direction),
the displacement field is u(x,t) = ug(x1,t), and the only nonzero stress component is
o31. The governing equation for such a shear wave is

82163 1 aQU3 G
—_— =, cs = | —.
ox3 & ot 5 p

In each of the above cases, there are two regions in the elastic body, separated by
¥ = c*t, where ¢* is the appropriate wave speed and z* is the direction of wave
propagation. For z* < c*t the displacement is proportional to the area under the
pressure-time or shear-time curve integrated from t = 0 to t =t — z*/c*. For z* > ¢*t
the displacement is zero, meaning the material there has not yet “felt” the elastic wave.
As a concrete example, in the case of a bar wave the critical distance z* at a time t is
given by x1 = cpt, and the displacement at a point x < cpt, at a time ¢, is given by the
integral of the pressure curve p(7) on the interval 7 € [0, — x/cp].

I Exercise 4.5.5. AKG 2.32 through 2.39.
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Recall that an elastic material, as modeled in the previous chapter, (i) experiences
a response independent of the deformation rate; (ii) returns instantaneously to the
undeformed configuration when applied tractions are removed; and (iii) never dissipates
energy. In this section we examine the response of materials that are not purely elastic, but
rather possess some of the tendencies of viscous materials. For example, the mechanical
response of many polymeric materials can be described using the models developed in
this chapter.

In particular, the constitutive relations we will examine in this chapter are called vis-
coelastic. In order to develop the conceptual aspects of the theory without burdensome
math, in this chapter we restrict attention to a one-dimensional development of the
constitutive relation. We will also restrict ourselves to linear viscoelasticity, which is
sufficient to describe the small-strain behavior of these materials.

In one dimension, the linear elastic constitutive relation reduces to

o(t) = Ee(t),

where we have re-introduced a time parameter ¢. By definition, a viscoelastic material
exhibits certain characteristics of such elastic materials. However, a viscoelastic material
also exhibits certain characteristics of linearly viscous (also called Newtonian) materials,
for which the stress response depends linearly on the rate of strain:

U(t) - Ué(t)7

where we call the parameter 1 > 0 the viscosity.
Phenomenologically, viscoelastic materials:

e experience a stress response that depends on the rate of applied strain;

o fully return to their undeformed configurations some time after the deformation is
applied, then removed (“unloaded”);

« dissipate a nonzero amount of energy;

e experience stress relaxation, where under a constant applied strain, the stress in
the material decreases over time;!

e experinece creep, where under a constant applied stress, the strain in the material
increases over time;?

Remark 5.0.1: The physical origin of dissipation in viscoelastic materials is a result
of internal “drag” during the deformation. For example, an interstitial fluid (e.g.,
in a foam) or a nonzero amount of chain drag (e.g., in rubbers) contributes to an
overall “drag”.

Importantly,

'An example of stress relaxation occurs in guitar strings, which tend to de-tune (go flat) over time.
2An example of creep occurs in Silly Putty, which tends to change shape under its own weight.

52
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The linear models discussed in this chapter are applicable for small strains
only; namely, within the range 0% < ¢ < 5%.

5.1 The Stress-Relaxation and Creep Experiments

The canonical experiments which will be used to illustrate the response of viscoelastic
material models are that of stress-relazation and creep.

Definition 5.1.1. The Heaviside function h(t) takes one parameter, the time ¢, and
is defined such that
0, t <0
h(t) = { N

1, t>0

It is like a binary “off-on” switch. The time derivative of the Heaviside function dh/dt is
equivalent to the Dirac delta function:

Definition 5.1.2. The Dirac delta function §(t) takes one parameter, the time ¢, and
is defined such that

dn(ty [0, t#0; 0 B
dt_6<t)_{oo, oo | ama=

Exercise 5.1.3. Sketch a graph of the function y = h(t — 2). Describe the effect of the
parameter 7 in the generalized Heaviside function y = h(t — 7).

5.1.1 Stress-Relaxation

In the stress-relaxation experiment, we consider the effect of applying to a one-
dimensional body the strain function

e(t) = eoh(t).

In words, the body experiences no strain for all ¢ < 0, and the body experiences a
constant strain g¢ for all t > 0. Now, we would expect a purely elastic material to have
the stress response

o(t) = Eeoh(t) (elastic)

3

and a purely viscous® material to have the stress response

o(t) = nepd(t) (viscous).

A viscoelastic material behaves somewhere between these two models. In particular, the
stress spikes at t = 0T to a nonzero value, then falls exponentially to a long-term value
as t — 0o, where it is constant in the limit. To characterize this behavior, we normalize
the time-dependent stress response o(t) we normalize by the input strain:

Definition 5.1.4. In the stress-relaxation experiment, we define the relaxation modu-
lus E,(t) as the normalized stress response,

E.(t) = Gg(ot).

3Here and for the rest of this chapter, “viscous” means “linearly viscous”, i.e. obeying the linear
constitutive response of a Newtonian fluid.
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We are often interested in the short- and long-term responses. To this end, we define the
glassy relaxation modulus E,; = lim,; ,o+ E,(¢) and the equilibrium relaxation
modulus E,. = lim;_,o E,(t).

Remark 5.1.5: Notice that once the strain is applied, the elastic model has a constant
relaxation modulus equal to the elastic (Young’s) modulus, E,(t) = Eh(t). The
glassy and equilibrium moduli are both equal to E in this case. The viscous model
has a relaxation modulus E,(t) = nd(t), which spikes to infinity at the instant the
stress is applied, then immediately goes to (and stays at) zero. Hence, the glassy
modulus is infinite and the equilibrium modulus is zero.

5.1.2 Creep

In the creep experiment, we consider the effect of applying to a one-dimensional body
the stress function

o(t) = ogh(t).

Analagously to the stress-relaxation case, the body remains stress-free for all ¢ < 0, and
experiences a constant one-dimensional stress og for ¢ > 0. Unsurprisingly, we would
expect a purely elastic material to have the strain response

e(t) = %h(t).

The viscous material would have the strain response

£(t) :/07(;) dt = %t,

which linearly increases with time. In reality, as with the stress-relaxation case, a
viscoelastic material behaves in between these two models. At ¢t = 0T, the strain spikes
to a nonzero value, and as time progresses, the strain increases nonlinearly (this creeping
behavior lends its name to the experiment) and eventually asymptotically approaches
a long-term constant strain as ¢ — co. We thus normalize the time-dependent strain
response €9 by the input stress:

Definition 5.1.6. In the creep experiment, we define the creep compliance J.(t) as
the normalized strain response,

e(t

Jo(t) = Q

ao
The term compliance is used because the creep compliance has units of inverse stress, e.g.
MPa~!. The glassy creep compliance J., = lim,_,o+ J.(t) characterizes the short-term
behavior and the equilibrium creep compliance J.4 = lim;_,«, J.(t) characterizes the
long-term behavior.

Remark 5.1.7: It is worth stating explicitly that E,(¢) and J.(t) are both material
properties. These material properties are the time-dependent versions of E and
J = 1/F for a linear-elastic material. (So far we have not discussed the actual form
of these functions, which describe how the viscoelastic response evolves with time;
we will do so soon.)
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Definition 5.1.8. A linear viscoelastic material is one for which E,(¢) does not
depend on ¢, and J.(t) does not depend on oy.

Caution! In general,

E.(t) # Jl(t)

although they are related (just not by this simple relationship). Rather,

C - T)dEd"(T) dr = h(t)

0— T

However, it is true that E,;, =1/J., and E,. = 1/J,.

Example 5.1.9
We are trying to hold together two rigid parts using a polymer bolt (and a rigid

nut). The polymeric material has relaxation modulus E,(t) = 5¢="° GPa (time ¢

is in hours). The bolt is tightened rapidly to a tension of 1 kN at ¢ = 0. It has a

cross-sectional area A = 7 x 0.004 mm?.

¢ Find the strain in the bolt as a function of time for ¢ > 0.
e Find the bolt tension after 24 hours.
Solution:
o This is a relaxation test (because the plates and nut are fixed). Thus

_ gy 00D 1kNxA o
eo=¢(0M) E.(07) = GPa 0.004,

which can be taken to be fixed for all ¢.

e The stress after 24 hours is
0(24 h) = E,(24 h)gy = 1.1 MPa,
so the force is (24 h)A = 56 N.

Remark: Actually, this material would have E.. =0 — J.. — o0, which is
characteristic of a wviscoelastic fluid.

5.2 Boltzmann Superposition Principle

Knowledge of E,(t) (or J.(t)) is sufficient to characterize a material’s response to a single
step strain (or step stress) as in the stress-relaxation (or creep) experiment. However,
these functions alone cannot be used to describe the response of a viscoelastic material
to an arbitrary stress or strain input.

Importantly, for a viscoelastic material, the strain (or stress) at a given time depends
on the stress (or strain) applied at all previous times, not just at the current time.
Fortunately, because the theory relies on linearity, we can use superposition to fully
describe the material response to an arbitrary input. Consider the case of an arbitrary
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strain input, €(¢). The idea is to break this down into finite increments Ae; and consider
the corresponding incremental response as fully defined by E,(t). This works because
each one of the Ag; can be considered to “turn on” at a corresponding t; and stay on;
hence, it can be modeled using a Heaviside step function. Moreover, because the model
is linear, the total response is simply the sum of the incremental responses. That is, if

N
e(t) =Y Agih(t — t;),
=1

for each value of i the corresponding stress output is
O'i(t) = AEiET(t — tl’),

so the total stress output is
N N

o(t) =Y oit) =Y AgE.(t —t;).
=1

i=1

For a viscoelastic material subject to a time-varying strain input (¢), the
stress at time t* > 0 depends not only on £(t*), but on (') for all t' < t*.

(The same result holds for a stress input and the corresponding strain output.) In the
limit of finer and finer discretizations, N — oo and ¢;41 — t; — 0 and we can rewrite the
sum as an integral. (Explicitly we will let the discrete Ae become the infinitesimal £dt.)

Key Equation 5.2.1 (Boltzmann Superposition Principle)

For an arbitrary strain input €(¢) applied at ¢ = 0, the response of a viscoelastic
material having relaxation modulus F,(t) is given by

oty = [ Bt —u)EW

du.
0- du Y

For an arbitrary stress input o(t) applied at ¢ = 0, the response of a viscoelastic
material having creep compliance J.(t) is given by

)= | t Jc(t—u)dz(u) du.

- u

I Exercise 5.2.2. AKG 5.6

5.3 Standard Linear Solid

Thus far we have treated E,(t) and J.(t) as givens. In reality, they are experimentally
measured, and there exist several standard models used to describe viscoelastic behavior.
Hence, experimental data is usually curve-fit to determine the model parameters, after
which the model behavior may be used to extrapolate the specimen behavior. The most
common one-dimensional standard model is called the standard linear solid (or SLS).
The model has two discrete types of one-dimensional elements: a linear spring (i.e., an
element which obeys the linear elastic constitutive model o = Fe) and a viscous dashpot
(i.e., an element which obeys the linear viscous constitutive model o = 7¢). In general,
models with these springs and dashpots are called analog models of viscoelasticity.
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Exercise 5.3.1. Show that when placed in parallel two spring elements having stiffnesses
FE; and FE, respectively can be replaced by a single equivalent spring having stiffness 7 + Fs.
(By equivalence we mean that the models have the same strain output for a given stress
input, and vice versa.) Repeat the exercise for two springs in series, and show that the

equivalent stiffness is
(/B +1/E5) ™

Show that the opposite rules hold for dashpots; i.e., that two dashpots of viscosities 7,
and 7y have equivalent viscosity 7y + 12 in series and equivalent viscosity (1/n; + 1/12)7*
in parallel.

Exercise 5.3.2. Graph the stress-relaxation and creep responses of (%) a linear spring, (47)
a viscous dashpot, (%) a linear spring in series with a viscous dashpot, and (v) a linear
spring in parallel in series with a viscous dashpot. Write down the governing equation(s)
for each system. (Hint: in the models involving a spring and a dashpot, you may need to
solve an ODE to describe the response. It is easiest to identify the “viscous part of the
strain”, ¥, and use it as an internal variable in order to solve the system.)

Key Equation 5.3.3 (Standard linear solid)

The SLS model consists of one spring having stiffness F; in parallel with a spring-
dashpot combination in series. The spring-dashpot combination consists of a spring
of stiffness Fo and a dashpot of viscosity 7.

The total stress experienced by the model consists of the sum of the stress through
the branch with only Ej, and the stress through the spring-dashpot (Es, ) branch.
Observe that the stress experienced by the spring F» is equal to the stress experienced
by the dashpot 7, whereas the sum of the strains in Fs and 7 is together equivalent
to the strain in Fj.

The constitutive relation in the SLS model is described by

&y = @(5_51))7

{a = E1c + Es(e — &)
n

where g, is an “internal variable” that evolves with each increment of time. Equiva-
lently, we can eliminate ¢,, and the constitutive relation becomes

O'—i—TR(j':ElE—i-(T]—i-ElTR)é,

where 7 = 1/ F» is a parameter having dimensions of time, called the characteristic
relaxation time of the model.

e The response of the SLS model to the stress-relaxation experiment with input

strain e(t) = eoh(t) is

t
Er(t) = Eyre + (Erg - Ere) exp <_7-R> )

where E,.y = F1 + F3 and E,. = Ej.
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e The response of the SLS model to the creep experiment with input stress
o(t) = oph(t) is

t
Je(t) = Jee + (Jog — Jee) €xp <—) ,
TC

where ch = 1/(E1 + EQ), Jee = I/El, and 7¢ = TR<E1 —|—E2)/E1

Observe that E,.(t) # 1/J.(t) and 7R # 7¢ in general, but that E.. = 1/Je
and E,; = 1/J.4 as promised. Also observe that the stress relaxation and creep
compliance functions are independent of the magnitude of the inputs, as promised.
Moreover, the physical interpretation of 7 and 7¢ as characteristic time constants
is clear. For example, in a time period of 7, the stress in the relaxation experiment
has decreased by a factor of 1/e. Hence, the smaller the value of g, the faster the
equilibrium (long-term) condition is reached.

Exercise 5.3.4. Starting with the constitutive relation for the SLS model in “evolution
form”, namely:

gy = L2(e—¢g,),

{(7 :E1€+E2(€7€v)
n

show that the stress and strain and their time derivatives are related by
0+ Tro = Eie + (’l’]-i—ElTR)é,

where 7r = n/F>. Hint: You will need to take a time derivative of the first equation, then
eliminate the variables ¢, and &,.

Then, show that for a step strain input e(t) = 9h(t), we recover the form for F,(t)
shown above. Hint: what are £(t) and £(¢) for all ¢t > 07

In general, we can see that the SLS model describes a time-varying, exponential-decay
type response to a step input. This is commensurate with experimental observations
on viscoelastic materials. The SLS model can be further specialized to more basic
combinations, although it must be stated that these more basic combinations are not
sufficient to accurately model the exponential-decay response to an arbitrary given loading.
Nevertheless, we record these models for completeness.

Definition 5.3.5. The Maxwell model consists of a single spring and dashpot in series
and can be obtained in the limit £y — 0 in the SLS model. The Mazwell model does
not exhibit exponential-decay type creep in response to a step stress input. (Rather, the
dashpot exhibits linear creep, which is not arrested by the spring in series with it. This
is closer to the response of a viscous fluid.)

Definition 5.3.6. The Kelvin-Voigt model consists of a single spring and dashpot in
parallel and can be obtained in the limit Fo — oo in the SLS model. The Kelvin-Voigt
model does not exhibit exponential-decay type stress relaxation in response to a step strain
input. (Rather, with the strain held constant the dashpot is given no chance to respond,
because it only responds to time-varying strains with a nonzero strain rate. Hence the
behavior for any ¢ > 0 is governed entirely by the spring.)

I Exercise 5.3.7. AKG 5.1 and 5.2.
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Remark 5.3.8: From these shortcomings it is possible to conclude that in order to
predict creep accurately, a spring-dashpot model should include a single spring in
a parallel branch (this fixes the problem with the Maxwell model). Moreover, in
order to predict stress relaxation accurately, a spring-dashpot model should not have
a dashpot alone in a parallel branch (this fixes the problem with the Kelvin-Voigt
model).

In general, from these arguments we may conclude that the SLS model is the
simplest analog model that accurately captures both creep and relaxation behavior.

From Remark 5.3.8 it is also possible to extrapolate the most general version of an analog
viscoelastic model. This model should consist of (i) one spring alone in a parallel branch?,
to accurately model creep; and (ii) an arbitrary number of parallel branches each having
a series spring-dashpot combination, to accurately model stress relaxation. This general
model is called a generalized Maxwell model. Namely, it consists of a single spring
of stiffness Fy in parallel with IV series spring-dashpot pairs having stiffnesses F; and 7);
respectively, for 1 <4 < N. Hence each branch but the first has a corresponding time
constant (7g);, which characterizes how fast that branch responds to a step input. It can
then be shown that the stress-relaxation function can be written in terms of a sum,

E.(t) = Ey + ZV;EZ xp (_ (Tj{)i) 7

called a Prony series solution. A similar form for J.(t) can be written. It is this Prony

series form to which experimental data is often fit; then, characterization of the specimen
reduces to finding the values for Ey, E;, 1;.

Exercise 5.3.9. Write the constitutive relation (in evolution form) for a generalized
Maxwell model having NN series spring-dashpot branches and an extra spring in series. Hint:
Each of the N branches looks like a Maxwell element, so we can express the total stress
in terms of N wiscous strain internal variables. Show that a stress-relaxation experiment
yields the form of E,.(t) above.

Remark 5.3.10: The “family” of SLS models is only one example of an assumed
form for the relaxation function E,(t). Because this is a game of fitting experimental
data, several other models exist to characterize the relaxation profile. For example,
a power-law relazation function of the form

Erg - Ere

Er(t) = Ere + m

with parameters E,., E.q4, 79, and n > 0. Another such example is the stretched
exponential function

Ey(£) = By + (Erg — Ere) exp [— <t)ﬂ] ,

Tt can be shown (see the Exercise in this section) that an arbitrary number of springs alone in parallel
can be combined to one equivalent spring alone in parallel; hence one spring alone in parallel is
sufficient here.
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‘ for0 < g < 1.

Exercise 5.3.11. AKG 5.12. Note the different definitions of E,4, E,., etc., when the
model is changed! AKG 5.13(a)-(b).

Exercise 5.3.12. Often in stress-relaxation experiments it is impossible to apply a proper
Heaviside strain inputs; real testing machines must apply the prescribed strain input over a
nonzero amount of time. To model this properly, consider the input strain profile

e(t) = kt — k(t — t1)h(t — t1),

where k£ > 0 is a constant strain rate (having units of inverse time), and ¢; represents the
(known) time over which the strain input is applied. Assume that ¢; and k are constrained
such that the total strain is 0.01 after the ramp period.

Suppose the material being tested can be modeled as an SLS material.

1. Graph the input strain-time profiles for k = 1,2, 5,10 sec™!.

2. Use the Boltzmann superposition principle to write an expression for the output
stress-time profile o(¢) in terms of k and the SLS model parameters E;, E,, and 1.

3. For F; = 0.2 MPa, Es = 0.8 MPa, n = 0.8 MPa sec, graph the output stress-time
profiles for k = 1,2, 5,10 sec™!, and the corresponding stress-strain profiles.

4. Now suppose that an N-branch Prony series is required instead of the SL.S model.
Write an expression for the output stress-time profile in this case.

5.3.1 First-order analogy to RC circuits*

In this optional subsection, we develop a first-order electrical /mechanical analogy for
the analog viscoelastic model®. In particular, we develop an analogy between a linear
viscoelastic mechanical system and a basic type of electric circuit. Because the governing
differential equations for both systems take the same form, the solutions (and therefore
the component behavior) can be directly compared.

Consider an electrical system that consists of a DC voltage (or current) source, a resistor
(resistance R), and a capacitor (capacitance C'). With respect to the voltage/current
source, the resistor and capacitor can be arranged in series, parallel, or a combination
thereof. The current-voltage relationship across the resistor obeys

1
I(t) = =V(t
() = V(1)
and across the capacitor,
dv(t)
I(t) =C———
(=,

where I(t) represents the current and V(¢) represents the voltage, both functions of
time. Comparing these relations with the constitutive relations for a spring and dashpot
respectively, we can make the following analogies:

‘a<:>1; e — V; E < 1/R; C <1

5Note that this first-order analogy does not accurately model the energy (specifically, dissipation) as it
is transmitted through circuit components. For a more complete analog, we would introduce a mass
to the mechanical system and an inductor to the electrical system, and then compare second-order
differential equations.
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where a resistor behaves like a linear spring (the resistance acts like the compliance, or
inverse stiffness), and a capacitor behaves like a dashpot. Hence the stress-relaxation ex-
periment is analagous to applying a constant voltage across some RC circuit, and the creep
experiment is analagous to applying a constant current across some RC circuit. More-
over, the relaxation time 7g = n/E in a single branch is analagous to the characteristic
relaxation time 7rc = RC which governs capacitive (dis)charging.

Example 5.3.13

Consider a series RC circuit, which is initially connected to a DC voltage source.
All elements are initially discharged; at time ¢ = 0, the voltage source is turned on
and from then on provides a constant voltage. That is, the applied voltage profile as
a function of time is

V(t) = Voh(t) (5.1)
(recall h(t) is the Heaviside function). For this circuit:

1. Identify the corresponding spring-dashpot model and the corresponding me-
chanical experiment (i.e. stress-relazation or creep).

2. Describe or sketch a plot of the current through the circuit as a function of
time.

3. What is the time constant 7 for the circuit?

Solution: The series RC circuit corresponds to the Maxwell model, having a
spring and dashpot in series. The applied quantity is a voltage input, which by
the previous part corresponds to a strain input (t) = eoh(t), which is the stress-
relaxation experiment. The current response of the circuit as a function of time
is similar in nature to the response of the Maxwell model in the stress-relaxation
experiment. Initially, the uncharged capacitor admits all the current allowed by the
resistor, Iy = Vp/R, but the current then decreases (exponentially) as the capacitor
charges. After a long time, the capacitor is fully charged, so no current flows through
the circuit.

To determine 7 for this series RC circuit, we could set up and solve the system
of differential equations, recalling that current is the same through the resistor and
capacitor, and that the total voltage drop across both components is equal to the
voltage input:

Ir(t)=Ic(t) = =Vg(t)=C
VRr(t) + Ve(t) = Vo

After solving the system, we could then inspect the exponential term in your
expression for Ip(t) (or Io(t)), which would have the form e~*/7. But an easier way
to work out the time constant is by analogy with the stress-relaxation time constant.

For the stress relaxation experiment the timescale is 7 = 1/ E where n and E are
the constants corresponding to the series dashpot and spring, respectively. Making
the substitution n — C and E — 1/R we arrive at 7 = RC for the series RC circuit.
This is indeed what we would arrive at after solving the system above.
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5.4 Correspondence Principle

For small-deformation structural applications involving reduced-dimension problems,
specifically beam-bending and shaft-torsion problems, there exists a connection between
the classical elastic solutions and the solutions for the same geometry, but with a
viscoelastic material model. This rule is called the correspondence principle.

Key Equation 5.4.1 (Correspondence Principle)

For a viscoelastic beam loaded at time ¢ = 0 with a stepped input (i.e., a stepped
load Pyh(t) or a stepped displacement dph(t)), the viscoelastic beam solution is given
by the elastic solution but with either

e E replaced by E,(t), in problems with a prescribed stepped displacement; or
e J =1/F replaced by J.(t), in problems with a prescribed stepped load.

A similar principle holds for viscoelastic shafts with stepped torsional inputs, whereby
the shear modulus G is replaced by the shear-stress relaxation function G,.(t), and
the shear compliance 1/G is replaced by the shear-strain creep function L.(t).

Example 5.4.2 (Viscoelastic cantilevered beam)

Consider a slender cantilevered beam of length L having creep compliance function
J¢(t) and moment of inertia I. A prescribed stepped force F'(t) = Fyh(t) is applied
at the distal end, producing a time-dependent displacement wy, = w(x = L, t) there.
Find an expression for wr,(t).

Solution: The elastic solution is given by

z2(3L — )
6E1

z?(3L — z)
61

w(az) = F() = FO J

on 0 < x < L for some elastic modulus £. Then the viscoelastic solution is

22(3L — x
w(w,t) = FO(GI)JC(t)’
so at the tip
FyL3
wi(t) = 7 Te(t).

The correspondence principle can only be used if:
o the Poisson ratio v of the material is constant in time, or

o regardless of v, the elastic solution is of the form

uy(x) = Ef(x) or  oo(x)=Jj(x),

where f and § are not a function of E, v, or any other elastic constant.

More generally, it can be shown that for any boundary value problem concerning a linear
viscoelastic material model, the elastic solution can be used to write down the viscoelastic
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solution. The procedure is to write down the elastic solution, then substitute

Ef(s) =sE,.(s) = s/io e S E,.(t) dt

for F, then take the inverse Laplace transform to obtain the viscoelastic solution.
The Laplace transform is defined as an invertible function L such that

L:f(t) = fs) = /Oo e~ (1) dt.

Remark 5.4.3: Taking a Laplace transform of E,(t) and J.(f) shows that they are
related in the following manner:

dr.

h(t) = Ot Jo(t —7) dfi;f) dr = Ot E(t—7) d‘]jf)

I Exercise 5.4.4. AKG 5.4, 5.7, 5.8.

5.5 Oscillatory Inputs

In the special case where the stress or strain input is oscillatory in time, i.e., it is of the
form
e(t) = go cos(wt)

for some strain amplitude € and oscillation frequency w, it can be shown that

the (stress) output is an oscillatory function with the same frequency,
but with a nonzero phase lag® § > 0,

“Note that ¢ is defined as a positive number in this case such that the strain always lags behind the
stress, by convention.

such that
o(t) = og cos(wt + §),

where o( characterizes the amplitude of the stress response. We call the ratio § /w, which
has units of time, the lag time. In order to relate the response profile to the input
profile, we want to re-write o(¢) in terms of €9 and w alone. It can be shown that this is
always possible, and that the response profile will have the form

o(t) = eo (E' cos(wt) — E" sin(wt))

for
E = @cos(é), =2 sin(4).
€0 €0
The quantity E’ is called the storage modulus because it has units of stiffness and, being
the coefficient of the cos(wt) term, quantifies “how much in phase” the stress response is
with the strain input. The quantity E” is called the loss modulus; it quantities how

much out of phase the stress response is. The ratio of these quantities,

/!

tan(d) = 7
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is called the loss tangent and represents a measure of energy loss as a result of dissipation.
It can be shown that the same applies in the case of an oscillatory stress input, i.e.
the input
o(t) = o cos(wt)

produces a strain output6
e(t) = gg cos(wt — §) = o (J' cos(wt) + J" sin(wt))
where the storage compliance J' and loss compliance J” are defined to be

J = 6—Ocos(é), J' = 6—Osin(é).

00 00

The loss tangent can be written in the form

"
tan(d) = %

The material parameters E’', E’, J', and J” are functions of the “excitation
frequency” w.

Remark 5.5.1: For a purely elastic material, E” = J” = 0, and the input is entirely
in phase with the output, § = 0. For a purely linearly viscous liquid, £/ = J' = 0,
and the input and output are perfectly out of phase, 6 = w/2.

In one cycle of oscillation, which takes a time equivalent to 7' = 27 /w, the work W done
by the input stress or strain profile can be determined by integrating the stress power
o(t)é(t) over the period t < 0 < T. In the oscillatory case, the total work in one full
cycle corresponds exactly to the dissipated energy, because the material has returned to
its original state. Carrying the computation out we can see that

W = mopep sin(9) (one cycle),

so that the amount of dissipation depends on the value of §. In terms of the loss modulus
or the loss compliance,

W = nelE" = nolJ" (one cycle).

To determine the ratio between stored and dissipated energy, we can instead integrate
from 0 <t < T/4, so that the specimen is in a different configuration from the reference
state. In this case we find that

1
W = 5000 cos(d) + %0080 sin(9) .

stored energy dissipated energy

The ratio of the dissipated energy to the stored energy over this quarter cycle is called
the damping capacity, and is related to the loss tangent:
T El/ T J//

damping capacity = gtan(d) =S m =3

5Observe the minus sign in the expression cos(wt — J) such that again, the strain always lags the stress.
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‘ The damping capacity tan(d) is a function of the excitation frequency w.

I Exercise 5.5.2. AKG 5.11.

5.6 Complex Number Representation

Being periodic, the stress (strain) inputs and corresponding strain (stress) outputs may
be represented in terms of exponentials with complex numbers, which can simplify the
form of caclulations. Note that no new information is given in this section; the preceding
formulations are simply rewritten.

Definition 5.6.1. The complex modulus E* is constructed using the storage modulus
E’ as the real part and the loss modulus E” as the imaginary part, i.e.

E*=FE +iE".
Similarly the complex compliance J* can be written as
J=J +iJ.

The two are related by E*J* = 1.

The complex modulus and complex compliance are both functions of the
excitation frequency:

E* = E*w),  J'=J'W).

Now, we rewrite the oscillatory stress input and corresponding strain output as
o(t) = ope™ = &(t) = J*o(t).

It is clear that the “physical” interpretation of J* is the strain output normalized to the
stress input, just as we had defined before:

eriwt ’
Similarly for an oscillatory strain input and corresponding stress output

e(t) = gge™t = o(t) = E*e(t).

Example 5.6.2
Using the definitions above:

e For a linear spring, o(t) = Fe(t) = o00e™! = Egpe™?, so it follows that
E* = F for a linear spring. That is, for a spring, £/ = F and E” = 0.

o For a Newtonian dashpot, o(t) = né(t) = 0¢e™! = niwege™?, so it follows
that E* = iwn for a linear dashpot. That is, for a dashpot, £/ = 0 and
E" = nw = ETrw.
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Remark 5.6.3: A complex number written in the form z = Ae? has corresponding
amplitude A and phase angle §. The same complex number can be written as
z = x + 1y, so that there is an additive decomposition into real and imaginary parts.
The parameters A, 6, x, and y here are related by

x = Acos(f);y = Asin(0); A = 2? + y*;tan(f) = 9.
x

Specifically, £* can be expressed two ways:

E*(w) = |E*(w)| exp(id(w)) = E'(w) + iE" (w);

from which it follows that

E' = |E'| cos(d); E" = |E"|sin(d); tan(d) = —-

as before.

Definition 5.6.4. The Deborah number De is the dimensionless excitation frequency
normalized to the characteristic relaxation time,

De = wrp.

Because E’, E”, and tan d are functions of the excitation frequency, it is common to plot
their trends as a function of the nondimensional De instead.

o For De — 0 (the excitation frequency is very, very small compared to the inverse of
the characteristic relaxation time), the polymer behaves like rubber and the storage
modulus E’ is low. Namely, £/ = E,., a value independent of frequency. In this
case tan d =~ 0.

o For De — oo (the excitation frequency is very, very large compared to the inverse
of the characteristic relaxation time), the polymer behaves like glass (“is glassy”)
and the storage modulus E’ is high. Namely, £’ = E,,, a value independent of
frequency. In this case tand ~ 0 as well.

o For De =~ 10° (the excitation and relaxation timescales coincide), the material
behaves viscoelastically, with £’ increasing with frequency. Here, E” and tan ¢ are
near their highest values.

Remark 5.6.5: The frequency-dependent response of a Prony series is a natural
extension of the previous observations. Specifically, if the Prony series has N
branches, the graph of E’(w) will have N plateaus, and the graph of (tan(d))(w) will
have N peaks, each corresponding with the characteristic stiffness F; and the inverse
of the characteristic time constant 7; of an individual branch.

Exercise 5.6.6. AKG 5.9, 5.13(c), 5.16.

The following exercises are more general and cover the extension of our one-dimensional
framework to three dimensions.
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I Exercise 5.6.7. AKG 5.22, 5.23, 5.24, 5.25.

5.7 Temperature Dependence of Viscoelastic Effects

In general, the behavior of polymeric materials is highly temperature dependent. Thus,
all material properties §, E/, E”, J', J” are not only functions of frequency w, but also of
temperature. It is important to recall that solid polymers are made up of long polymer
chains, which are held together by van der Waals bonds and covalent crosslinks. In the
case of semi-crystalline polymers, there is also a crystalline structure (order) in a fraction
of the material.

Definition 5.7.1. The glass transition temperature 7} is the temperature at which
the van der Waals bonds melt, and only entanglements are left between chains; hence,
the entangled polymer chains begin to slide relative to their neighbors, resulting in an
abrupt loss of structural properties. In actuality the glass transition occurs over a range
of temperatures, typically within a 20°C window.

For amorphous polymers (e.g. polycarbonate), below the glass transition temperature
the material behavior is highly elastic (i.e., E' > E”). Near the glass transition tempera-
ture, van der Waals bonds melt and entanglements slightly loosen, causing the sliding
of polymer chains and frictional dissipation (which causes a spike in E”). Above the
glass transition temperature, the polymer has effectively changed state: both E’ and E”
decrease. But E’ has decreased more (because the van der Waals bonds remain melted
at such high temperatures), so tan § remains elevated.

For a viscoelastic polymer, the graph of the storage modulus E'(T) as a
function of temperature 7" will be monotone decreasing. Moreover, the
graph of the loss modulus E”(T) will exhibit a peak at the glass transition
temperature T,. At this temperature the storage modulus E’ is in its
most rapid rate of descent.

For semi-crystalline polymers, there is an additional amount of temperature required to
melt the crystals and remove all elastic contributions. Therefore after the glass transition
temperature where the van der Waals bonds have melted but the crystal structure still
exists, there is a plateau in the plot of E’. This plateau ends at the melting temperature
of the polymer.

Definition 5.7.2. The melting temperature T}, for semi-crystalline polymers’ is
the temperature at which the crystal structure begins to experience sufficient thermal
vibrations to cease being an ordered solid. Above the melting temperature, viscoelastic
solids act more like viscous fluids. The graph of E'(T) for a typical semi-crystalline
polymer will have the same characteristics as a typical amorphous polymer, with an

additional drop near the melting temperature.

5.7.1 Time-Temperature Superposition for Amorphous Polymers

Remarkably, for amorphous polymers, the graphs of the relaxation modulus as a function
of time, F,(t), as measured at different temperatures, coincide in such a way that they
can be shifted along the time axis using a shift factor, which is a material property.

"Typically a polymer is considered semi-crystalline if the degree of crystallinity is at a minimum 30-35%.
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To do so, one measurement temperature is chosen as a reference temperature Tier, and
for this reference temperature the shift factor at all other measurement temperatures
is determined. There exist empirical correlations for the shift factor as a function of
temperatures which hold for almost all amorphous polymers. Once the shift factors are
determined, the corresponding relaxation curves are shifted by that amount to create a
“master curve”. The key point is that time-dependent effects like the reduction in FE,(t)
with time ¢ happens faster as a result of higher temperatures, but “predictably” so.

I Exercise 5.7.3. AKG 5.26, 5.27.



6 Limits to Elastic Response and Plasticity

6.1 Limits to Elastic Response

As discussed in the previous sections, the elastic (or viscoelastic) theory is useful in
describing the behavior of most materials up to a “small” displacement limit'. If (1)
pre-existing cracks are not present, and (2) the load is not cyclic, the elastic limit is
typically followed by one of the two following types of responses:

¢ brittle failure, which is marked by catastrophic and fast fracture; or

e ductile yielding, which is marked by an increase in strain with a corresponding
change in stress which is nonlinear, often accompanied by permanent deformation
of the specimen before failure.

In the case of brittle failure, the mathematical failure criterion is simple: simply take
01 =0l (onset of failure)

where o7 is the maximum principal stress, o1 = max(aip ), and o1 ¢; is a material property,
obtained from a laboratory experiment on a standardized sample of the material. If
01 < O1cr, We assume the material remains elastic. (Note that in reality, for most
materials which fail in a brittle manner, the compressive failure stress is much higher
than the tensile failure stress. This is due to the predominant failure mode being crack
propagation.)

For ductile yielding, the situation is a bit more nuanced. To define a criterion for the
onset of non-linearity, we still would like to define a scalar function

f:Lin - R,o0 — 0,

which “captures the essence” of the entire stress state o in a single number ¢ which we
can then compare to a threshold value Y that represents a material property. This yield
criterion should therefore require

g=Y (onset of yield)

with ¢ < Y corresponding with elastic behavior. It would be especially simple if we could
connect the material property Y to a physical experiment which can be done easily in
the laboratory.

It turns out that the simplest — and most important — laboratory experiment that
can characterize the properties of both brittle and ductile materials is the uniazial tension
test. We have already mentioned the resulting stress state before; recall that in an elastic
state of uniaxial tension the stress tensor is given as o171 = oe; ® e; and the resulting
strain tensor is € = £11€1 ® €1 + £22€9 ® €9 + €333 ® ez, whereby we were able to define
the elastic modulus E = 011 /e11.

Lexcept in the case of finite elasticity, which is applicable to some rubber materials for large deformations

69
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6.1.1 Phenomenological response of polycrystalline metals in uniaxial tension

Let us first consider the inelastic behavior of polycrystalline metals, which represent a
significant proportion of practical engineering materials. Consider a metallic specimen to
which we apply a uniaxial tensile displacement J; correspondingly, and measure the load
P in that direction.

Definition 6.1.1. We normalize the displacement to engineering strain e = 6/Lg and
normalize the load to engineering stress s = P/Aj, where Ly and Ay are the length
and area, respectively, of the gauge section of the specimen in the reference (undeformed)
configuration, which is taken to be before the test begins.

Qualitatively, a typical plot of engineering stress versus engineering strain looks like
the following:

Engineering stress

Engineering strain

Figure 6.1: Experimental stress-strain data obtained from a sample of aluminum 6061-T6.
Labeled are the yield point B, the point of ultimate tensile strength U, and
the point of failure F', alongside a hypothetical unloading-reloading curve

CD.

Experimentally, we make the following observations alongside the recorded data:

o The initial non-linear region (sometimes called the “toe” region) represents the
take-up of slack by the specimen, grips, and testing machine, and is not considered
to be representative of any material property.

e The elastic regime is taken to span from the end of this toe region until point B.
Behavior within this limit is entirely reversible upon unloading and reloading.

e From B — C — U the specimen volume is conserved. This region is characterized
by strain hardening, whereby the specimen is able to withstand a greater load P
despite a reduction in the cross-sectional area.
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e From U — F, the deformation is localized at a neck. The strain hardening capacity
is unable to keep up with the rapid rate of reduction in cross-section at the neck,
and thus the load P decreases.

o The onset of yielding (point B) is often hard to determine experimentally, so
the 0.2% offset method is often employed, whereby the yield point is taken
to be the point where the experimental data curve intersects a line drawn with
slope equal to the computed elastic modulus E and with a horizontal intercept at
e = 0.002 = 0.2%.

o If the material were unloaded at point C, it would follow line C'D, which has slope
equal to the elastic modulus. Subsequent re-loading would also follow line DC, and
the material would appear to have a higher yield strength after this unload-reload
cycle.

e The area under the engineering stress-engineering strain curve is a measure of
energy absorption per unit reference volume AyLg, and is called toughness.

Remark 6.1.2: Notice that in the elastic-plastic universe, a given state of stress
may correspond to more than one state of strain, and a given state of strain may
correspond to more than one state of stress. This is in explicit contrast to the theory
of linear elasticity, for example, where there is a one-to-one correspondence between
stress and strain. This motivates the need for a more complicated constitutive
model for plasticity, and explains why we cannot simply write an simple stress-strain
relation to model the plastic regime.

Definition 6.1.3. We define true stress 0 = P/A, where A is the deformed cross-
sectional area at the instant that P was measured, and define true strain e = In(1+e¢) =

In (L%—‘g‘s), where Lo + 6 represents the deformed gauge length at the instant that ¢ was
measured.

Key Equation 6.1.4

Until the onset of necking, we can use the fact that volume is conserved to write a
relationship between engineering strain and engineering stress. Then, in this regime,
we have

o=s(l+e)
e=1In(l+e)

Up until the yield point, ¢ and ¢ coincide with s and e, respectively, Between the
yield point and the ultimate tensile stress, which marks the onset of necking, we
always have s < o. After the onset of necking, we generally do not refer to o, because
the deformation is no longer uniform across the gauge section of the specimen.

Remark 6.1.5: To explain the physical phenomenon of necking, consider the gauge
section of a tensile dogbone specimen. Suppose that during a displacement-controlled
tensile test, one small “slice” of the cross-section happens to deform a small bit more
than its neighbors, perhaps due to an internal flaw or other imperfection. Then,
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Figure 6.2: Engineering versus true stress-strain curves for the aluminum sample. The
true stress and true strain are computed using (6.1.4) only up to the onset of
necking.

this slice must support a higher true stress than any neighboring slice, because
it carries the same load over a smaller cross-sectional area. Now, if this slice has
not yet reached its ultimate tensile strength, the extra deformation will lead to
strengthening, because the slice has reached a higher point on the hardening curve
relative to its neighbors, in the regime where the additional amount of hardening is
more than enough to compensate for the additional amount of true stress. Hence in
a subsequent increment of elongation the other slices will take up the deformation,
bringing the entire specimen back into a homogeneous state. However, if the ultimate
tensile strength has already been attained by the slice, any subsequent localized
deformation cannot be sustained by further hardening. The strain-hardening capacity
is outmatched by the increase in true stress, and the resulting deformation will be
localized to this unlucky slice. This is precisely the necking instability. Therefore,
the critical condition for the onset of necking is attained precisely when the tensile
strength is reached, which is by definition the maximum of the engineering stress-
strain curve:

dP =0 — @:0.
de

This is called the “Considere condition” for necking. Equivalently on the true

stress-true strain curve we have
o
— =o0.

de

Example 6.1.6

Suppose a metal’s true stress-true strain curve can be modeled as ¢ = Ac™, for
constants A and n. What is the ultimate tensile strength?
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Solution: The ultimate tensile strength is defined to be the engineering stress at
the onset of necking. The condition for the onset of necking is given by
d
Yo — nA = A — €=mn,
de
and it remains to find the engineering stress at this value of true strain. Using o =
s(1+e) and € =1In(1 + e), we have 0 = sexp(e) = s =o0/exp(e) = An"/exp(n).

Consider a particular nonzero state marked by a point (og, ) on the stress-strain curve.
If a specimen is currently at this state and then wunloaded, as discussed previously the
stress-strain relation would follow a line with slope equal to the elastic modulus until
the stress falls to zero. If the specimen had passed the yield point at all during initial
loading, the strain will be nonzero when the stress falls to zero. We call this residual
strain the plastic strain associated with the strain ey, and we write £} to denote this
value. The quantity g9 — 50P is called the elastic strain and is written 653 . This is the
amount of strain “recovered” as the specimen is unloaded. Trivially, then, for all strain
states g, we have
€0 = 50E + E(I)D ,

where ef = 0y /E.

Remark 6.1.7: For small strains, we can define an “engineering strain increment”
based on the incremental displacement normalized by the original gauge length,
which produces a nice linear response:

de = — — e=

dL /L=L dL L — Ly
Lo '

=10 Lo Lo

For large strains, we can define a similar “true strain increment” based on the
incremental displacement normalized by the deformed length, which is not a constant.
Hence, the ratio dL/L produces a nonlinear response when integrated:

de dL . /L:LdL ! (L)
=—= g = — =In(—).
L =L, L Lo

The two are related: in fact, the engineering strain is simply the first term in the
Taylor expansion of the true strain:

ln(L>—ln(1+5>—6—1<5>2+
Ly) Lo) Lo 2\ILo

small when § < Lg

In what follows we will specalize the theory of nonlinear deformation to the case of
polycrystalline metals, which undergo plasticity. In doing so we will favor the true stress
and true strain measures.

Plasticity theory is formulated with respect to true stress and true strain.
This is because:

e Tension and compression look identical in the true stress-true strain
framework.
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e The true strain decomposes additively by definition.

e True strain accommodates “large” deformations, whereas the in-
finitesimal strain tensor is only an approximation.

Remark 6.1.8: For problems worked in a principal basis, if the original reference
dimensions in the basis directions are xg, yg, and zg, and the deformed dimensions are
x, y, z respectively, the logarithmic (Hencky) true strain tensor can be represented

as ( )
b2 0 0
nU] = 0 0 In (y%) 0
0 0 In (T))

6.1.2 Yield Criteria

Now that we have described the phenomenological behavior of a ductile metallic specimen
to a uniaxial tension test, let us return to the question of defining a yield function, f(o),
which we can use as a criterion to determine the onset of inelastic behavior. We require
that

1. the yield function must depend only on the deviatoric stress components, because
experimental observations suggest that plasticity is volume-conserving (incompress-
ible), a claim we will physically justify later;

2. the yield function must be invariant of the basis of o, if the material is isotropic;

3. the yield function must output |o11| when the state of stress o corresponds to
uniaxial tension, so that we can take the yield criterion to correspond with the
critical value of 011 at the onset of yield in a uniaxial tension test.

These three requirements are necessary, but not sufficient, to entirely determine a form
of the function f. Choosing different forms for f in terms of various stress components
leads to the definition of various yield criteria; we record the most popular ones here. We
denote the critical value of the appropriate stress measure by Y. For a sample which has
never undergone plasticity, ¥ corresponds to the yield strength o, obtained in uniaxial
tension.

Definition 6.1.9. The von Mises yield criterion defines

fo)= () = \[ 2P + B+ o) =

to be the von Mises stress (also called the equivalent tensile stress) and requires
that
c=Y (onset of yield).

Remark 6.1.10: The scalar ¢ is a scalar multiple of the second invariant of the
deviatoric stress tensor.
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Definition 6.1.11. The Tresca yield criterion says that the onset of yield corresponds
to a limiting value of the maximum shear stress, which is defined to be half of the
difference between the maximum and minimum principal stresses:

P P
(o7 — 03 )-

| =

Tmax

Specifically, the Tresca criterion stipulates that yield occurs when the maximum shear
stress in the specimen reaches the maximum shear stress in a tensile specimen at yield,
for which 7, = Y/2. (Here 7, is a material property called the Tresca shear yield
strength.) Hence in the uniaxial tensile experiment, the yield criterion is, explicitly,

(o —ol)=Y (onset of yield).

Remark 6.1.12: The Tresca yield criterion is more conservative than the Mises yield
criterion. In uniaxial or equibiaxial stress, the two criteria are identical. However,
for any other stress state, yielding occurs at lower stress values according to the
Tresca criterion, and for a given stress state, the Tresca criterion predicts larger
plastic deformation than the Mises criterion. For example, in the case of pure shear,
the Mises yield strength is reached at a stress which is a factor of 2/y/3 ~ 1.15 larger
than the stress at which the Tresca yield strength is reached.

However, calculating the principal stresses to compute the Tresca stress is involved,
whereas there is a direct formula to compute the Mises stress for any given stress
state. Thus, the remainder of this section uses the Mises yield criterion to develop
plasticity theory.

Stress invariants

We remarked earlier that ¢ is related to an invariant of the deviatoric stress tensor. More
broadly, several invariants of the stress tensor or of the deviatoric stress tensor are widely
used in theory; we record them here. In this section, let o;; represent the components of
stress in any basis, and let o; represent the principal components of stress. Moreover, we
define the principal components of deviatoric stress to be

1
ol =0 — §(Ul + 09 + 03).

Definition 6.1.13. The mean normal pressure or equivalent pressure stress is
defined to be

p= —gtr(f = —go'kk
1
= *5(011 + 092 + 033)

1
= —3(o1+ 02+ 03)

In a state of pure hydrostatic pressure (011 = 022 = 033, all other 0;; = 0), the mean
normal pressure is exactly equal to the negative of the nonzero stress components. In
general, p > 0 when the hydrostatic stress is compressive.



76 Solid Mechanics

Definition 6.1.14. The equivalent shear stress is defined to be

_ 1 1
7= \/ztr(alz) = \/2a§jo§j

I
= \/6 [(011 — 022)% + (022 — 033)% + (033 — 011)%] + (0, + 035 + 031)

- \/é (01 — 02)% + (02 — 03)? 4 (03 — 01)?]

1
= \[5lor ot + o)

In a state of pure shear (012 # 0, all other o;; = 0), the equivalent shear stress 7 = |o12].
Note that this invariant is not equal to the limiting value 7y in the Tresca yield criterion,
which is a material property of a given specimen.

Definition 6.1.15. The von Mises or equivalent tensile stress is defined to be

o= \/gtr(oﬂ) = \/;Jl’-jagj

1
= \/2 (011 — 022)% + (022 — 033)% + (033 — 011)?] + 3(0F, + 035 + 03))

- \/1 [(01 = 02)* + (02 — 03)2 + (05 — 01)?]

2
3 12 12 12
= 5(01 + oy +0%)

= V37

In a state of pure tension (011 # 0, all other o;; = 0), the equivalent tensile stress
o= ’U 11’.

Definition 6.1.16. The third stress invariant is defined to be

9 1/3 9 1/3
F= {Qtr(oﬁ’)] = {20%023‘051]

9 3 3 3 1/3
/. / /
= {2(01 +og to3 )]
I Exercise 6.1.17. AKG 2.9, 2.11 through 2.16.

6.2 Strain Hardening

After yield, if the material is not unloaded, it will become harder to further plastically
deform the more it plastically deforms. This phenomenon is called hardening (or
sometimes strain hardening). Specifically, experiments suggest that the stress required
to continue plastic deformation increases with increasing deformation. We call this
evolving “resistance to plastic flow”, as measured by the stress required for an additional
infinitesimal increment of plastic strain, the flow strength, and to reflect this, we recast
Y not as a single number, but as a flow strength function that evolves with the plastic
deformation. In the most general case, the flow strength is a function of the strain history,
because it must capture the idea that a material hardens as deformation continues.
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Notice that because we must record the strain history in order to fully understand
how hard it is to continue plastic deformation, we cannot simply assume Y is a function
of the current plastic strain state, i.e., we cannot simply write Y = Y (¢©). To this end
we must define some parameter that captures the total strain history in a manner that
“accumulates” all increments of plastic strain that have, in some way, contributed to prior
hardening.

This parameter is called the equivalent tensile plastic strain and is written £°, so
that we have

Yy=Y(E) >0, Y(EP=0)=o0y.

Note that we have not yet given a definition of -, This must be done carefully and
with nuance, so we postpone the formal definition until we have introduced a few more
aspects of plasticity. Nevertheless, we observe that the second relation here formalizes
the idea that the flow strength Y is always at least the yield strength oy during plastic
strain; in other words, when there has been no plastic strain history, the amount of
stress it takes to begin plastic deformation is precisely the yield stress. Finally, we note
that the way the hardening character of a particular sample evolves depending on the
current (and past) loading, or in other words the specific model for Y(EP ), depends on
the material composition and the ambient temperature. In this section we will first note
some general results and then later mention a few particular constitutive relations.

6.2.1 Types of strain hardening

There are two models for strain hardening: isotropic hardening and kinematic hardening.
The isotropic hardening model is an idealization of what occurs for most metals, whereas
the kinematic hardening model accurately captures certain experimentally-observed
effects. In reality, metals exhibit a behavior that has elements of both models. However,
for particular cases it may be acceptable to use the simpler isotropic hardening model.

The key difference between the two models is best illustrated in the case of cyclic
loading. Consider a loading case where a specimen is brought in tension past the yield
stress oy, further loaded into the plastic regime, then unloaded before necking. Suppose
the value of the flow strength Y just before unloading is recorded as oy. The specimen is
fully unloaded to zero stress and then loaded in compression until it begins to plastically
deform again. Suppose now that the value of the flow strength at the onset of plasticity
in the compressive stage is recorded as o,.

Definition 6.2.1. Isotropic hardening is characterized as the situation where |o;| =
|or|, i.e., where the yield strength upon reversal of load is exactly equal in magnitude to
the maximum flow strength attained before initial unloading.

Definition 6.2.2. Kinematic hardening is chracterized as the situation where |o¢| >
|or|, i.e., yielding upon reversal happens at an earlier magnitude of the flow strength
compared to the maximum flow strength attained before initial unloading. In other words,
the apparent compressive yield stress is reduced after tensile loading. Experimentally,
this phenomenon is called the Bauschinger effect.

Importantly, in general, we observe that both accumulated tensile plastic strain and
accumulated compressive plastic strain contribute to successive hardening. That is,
regardless of sign, with every increment of plastic strain, the strength increases. Hence,
using the current value of the plastic strain alone to characterize the hardening behavior
(and the stress in the material) is insufficient — we need a parameter that captures the
accumulation of plasticity. This is a key departure from the constitutive modeling we
have seen before, in elasticity, where the stress was independent of the loading history.
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6.2.2 Temperature dependence

Let T}, denote the melting temperature of a sample in absolute units, e.g. Kelvin. Then,

if Tiest > 0.357,,, plastic flow is temperature- and rate-dependent.

Namely, materials exhibit relaxation and creep behavior in the plastic regime. We call
this rate-dependence viscoplasticity. In general, the flow resistance increases with
strain-rate, and the flow resistance decreases with increasing temperature.

Remark 6.2.3: The analog model for viscoplasticity is a spring in series with a
dashpot-slider combination. The slider’s static friction represents the yield strength
of the material: the dashpot-slider combination does not flow until this stress is
attained. Once the slider does admit strain, however, it must move with the dashpot,
which captures the relaxation or creep aspect of viscoplastic flow.

6.3 Physical basis for metal plasticity

Metals are polycrystalline, made of crystalline grains which meet at grain boundaries.
Fach grain consists of an orderly atomic lattice, with atoms spaced in a regular pattern.
However, all real metals contain defects called dislocations in their lattices. For example, a
line dislocation occurs when one row of the lattice has one fewer atom than its neighboring
rows, causing a local distortion of the lattice. It turns out that these dislocations cause
the overall strength of the metal to decrease from the theoretical value calculated by
assuming a perfect network of bonds. In fact,

plastic deformation is due to the motion of dislocations, which we call
“slip”. That is, plasticity occurs because the grains themselves plastically
deform.

When we say that a dislocation has moved (by one atomic distance), we are actually
describing the rupture of a bond and a formation of another bond in a neighboring atomic
site that “transfers” the location of the defect. In this way, it is possible to cause plastic
strain in a crystal without an existing dislocation by creating a dislocation that moves
through the crystal as strain is applied. Moreover, because dislocation motion does not
affect the average interatomic spacing in a metal lattice,

plastic deformation is an entirely incompressible (volume-preserving)
process.

Slip generally occurs along atomic planes where the atomic density is highest. On
those planes, the slip direction is generally the atomic direction in which, again, the
density of atoms is highest. In particular, Schmid (1935) proposed that

 slip occurs when the magnitude of the shear stress resolved along a slip direction
on a slip place reaches a critical value, enough to move a dislocation.

Mathematically, if s* is a slip direction and m® is the normal vector to a slip plane, then
the slip criterion can be represented as

(onset of slip),



6 Limits to Elastic Response and Plasticity 79

where 7., is the critical resolved shear stress, a material property. In general, the
critical resolved shear stress is a function of interatomic bond strength, spacing, etc., but
it is worth repeating that

due to the presence of dislocations, the experimentally observed critical
resolved shear stress 7., is much less than the ideal value®.

“The ideal shear strength value is the estimated shear strength required to move an entire plane of
atoms over by one atomic distance, overcoming all the interatomic bonds simultaneously, as in a
theoretically perfect lattice.

Therefore, it is the “dislocation strength” that sets the value of 7., and hence there
are techniques to engineer the strength of metals based on how dislocations can (or
cannot) move. Every metal lattice is endowed with an intrinsic lattice resistance
71, which corresponds with the energy to break any bonds at all. Covalently bonded
materials like diamond, carbides, oxides, and nitrides have very high intrinsic lattice
resistances, whereas metals have low intrinsic lattice resistances. Hence, strengthening of
metals focuses on inhibiting dislocation motion. To this end, the following strengthening
mechanisms for metals are commonly seen:

¢ solid solution strengthening: adding alloying elements either substitutionally
(replacing a native atom in the lattice) or interstitially (fitting an atom between
native lattice atoms). Alloy elements “roughen” the slip plane (as described by
Ashby) and cause lattice mismatch strains s which alter the native spacing ¢ of
atoms on slip planes. In both (substitutional and interstitial) cases, the presence
of the alloying atom inhibits the passage of a dislocation relative to the intrinsic
strength of the native atoms. The contribution of solid solution strengthening to
the critical resolved shear stress scales as 745 o ei’/ 2c1/2,

e obstacle strengthening: adding closely-spaced, small, hard particles which make
it more difficult to physically move dislocations around. (For example, impurities
can be dissolved at high temperature, and the resulting alloy is allowed to cool,
which results in precipitation. Alternatively, oxides can be mixed into metal powder
before it is sintered.) The strengthening contribution scales as 7, < Gb/r, where G
is the shear modulus of the particle, b is the magnitude of the Burgers vector, which
represents the characteristic length scale of a dislocation, and r is the characteristic
length of the obstacle particle.

o strain hardening: intentionally creating more dislocations by plastically deforming
the material causes the dislocations to be entangled and obstruct one another,
which hinders the movement of subsequent dislocations. (This is the reason why
materials which are unloaded post-yielding, then reloaded, appear to have higher
yield strengths upon reloading.) If p is the dislocation density, the contribution
of strain hardening to the critical resolved shear stress is 7., o< aGb,/p, where
0 < a < 1is a constant.

Remark 6.3.1: A typical value of the dislocation density (measured as the
total dislocation line length " b; per unit specimen volume) in a well-annealed
high-purity single crystal is about p = 10® m/m?. After plastic deformation,
the density can grow to p = 10'® m/m3.
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A good estimate for the critical resolved shear stress in a single crystal is then
Ter = T + Tss + To + Tsh-

From this, it has been experimentally found that for a polycrystalline metal, the critical
resolved shear stress is approximately 1.5 times that of a single crystal. The reason is
because polycrystals contain grains oriented in all directions —the favorably oriented
grains (i.e., grains with slip planes closest to the direction of maximal shear) will yield
first.

In a uniaxial tension test of a polycrystal, the plane of maximum shear stress is oriented
at 45° to the tensile axis and the magnitude of the shear stress on this plane is half the
magnitude of the applied tensile load. Therefore the tensile stress at yielding has twice
the magnitude of the shear stress on the most favorable (45°-oriented) slip plane, and in
turn this shear stress is (about) 1.5 times the critical resolved shear stress in a single
crystal. Putting this all together, the tensile yield strength o, of a polycrystal can be
related to 7, for a single crystal by

Oy R 3T¢p.

Finally, grain boundaries contribute to strengthening by acting as obstacles against
dislocation movement. In simple terms, dislocations can be thought of as “piling up”
at grain boundaries, at which point additional energy must be expended in order to
transmit slip across grains. The Hall-Petch effect quantifies the size effect of grains.
If the characteristic grain size (i.e., the diameter of the average polycrystal grain) is D,
then the yield strength of the specimen is approximately given by

Oy RO+ =

75

where oy and k are material constants. (Here, o¢ is approximately the yield strength of
a large-grained polycrystal.)

Remark 6.3.2: One method of experimentally determining the strength of a sample
without destroying it is through hardness testing. Hardness represents the material’s
resistance to local plastic deformation. In general, the hardness H is related to the
yield strength by

H = 30y.

I Exercise 6.3.3. AKG 3.14.

6.4 Constitutive theories for one-dimensional plasticity

In this section we will record the standard theories for plasticity in one spatial dimension.
In accord with our previous discussions on the evolution of hardening and the lack of a
one-to-one correspondence between stress and strain for a general elastic-plastic material,
we cannot directly prescribe a “stress-strain relationship” as we have been doing for
elastic and viscoelastic materials. Instead, our goal will be to describe how an increment
of plastic strain, as described mathematically by the notion of a plastic strain rate &,
evolves based on the current and former states of the system. Our material model will
thus be an assumed form for the hardening function Y = Y (£F), together with the rule
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that & = Y during plastic deformation, accompanied by an evolution equation for £¥ in
terms of stress components.

Because we are working first in one dimension, arguments will be made in terms of
scalar quantities, with reference to the direction of testing. Later, we will generalize these
results to three dimensions, working with tensors instead. Recall that we will work only
in terms of true strain and true stress.

Remark 6.4.1: Several common models for the form of Y = Y'(¢¥) include:
e the power-law hardening function, which has three parameters Yy, K, n:
Y(ER) = Yo+ K(ED),
which reduces to a linear model when n = 1, and

o the Voce equation, which has three parameters Yy, Ys, Hp:

Y(") =Y. — (Y — Yo)exp (—I;_ng)

S

In both cases Y represents an initial value of the yield function, which coincides
with the yield strength of the material. The most appropriate model is typically
chosen using the aid of curve-fitting routines; recall that it is possible to extract
experimental hardening data simply from a uniazial tension test by plotting the true
stress o(=Y) as a function of the plastic strain (= &F) after the onset of yield.

Exercise 6.4.2. AKG A.12 and A.19. Here, the perfectly-plastic assumption is equivalent
to setting Y (£¥') = const. = o,.

6.4.1 Kinematics of strain

We assume that the total strain € can be decomposed into an elastic part and a plastic
part, as can the strain rate:

€:€E+€P: +€P

SIS

e =l 4¢P

Thus, the rate-of-working per unit volume 1) = ¢ can be likewise broken down:

1/}:JézaéE+aéP.
The term o¢¥ represents the rate at which work must be applied to a unit volume in
order to cause elastic deformation (i.e., stretching of interatomic bonds) at an elastic
strain rate e¥. Hence, this stress power is recoverable. However, the plastic stress power is
dissipative, D = o¢¥” > 0, because in plasticity bonds are physically broken as dislocations
move.

6.4.2 Flow strength

Recall that under plastic flow, the flow strength is defined in terms of the equivalent
tensile plastic strain, ¥ = Y(E_P ). Moreover, recall that in order for plastic flow to occur,
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the material must be meeting the yield criterion, & = Y. In the one-dimensional case,
there is only one stress component, so & = |o|, so a criterion for plastic flow to occur is

c=lo]l=Y and o0é>0 (plastic flow).

To properly define the equivalent tensile plastic strain £, we make the observation

that the flow strength depends on the integral of the time history of the plastic strain
rate, since for an arbitrary loading path both negative and positive increments of plastic
strain contribute to the present flow strength (see the discussion above). To that end we
must first define the equivalent tensile plastic strain rate.

Definition 6.4.3. The equivalent tensile plastic strain rate is defined to be the
absolute value of the plastic strain rate at a given time,

gl = eI >0.

Definition 6.4.4. The equivalent tensile plastic strain is defined to be the time
integral of the equivalent tensile plastic strain rate,

= /Otép(f) dr = /Ot P (7)| dr.

For the special case of one-dimensional loading, & = [7].

Remark 6.4.5: In rate-independent plasticity, time has no constitutive significance.
Therefore we may speak of “increments of plastic strain” de?” and hence define the
equivalent tensile plastic strain to be

EPE/]dEP\,
C

where the path C to integrate over is a curve within the true stress-true strain space.
Clearly, £¥ is a nondecreasing function.

Example 6.4.6

Consider a one-meter long rigid-plastic bar. Extend it in tension past the tensile
yield strength, then compress it past the corresponding compressive yield strength,
then pull in tension again until it returns to one meter. In this final state e =0 —>
eP =0, but ¥ > 0. Namely, if the bar is then re-loaded in tension, the yield point
will be higher than the original yield strength: the bar has been hardened.

Remark 6.4.7: We can build up an analog model for plasticity, in accordance with
the kinematic decomposition of strain, ¢ = e¥ + ¢’ In particular we can combine
an elastic spring (with characteristic modulus E) and a plastic slider, which is an
element with a threshold strength oy along with the property that when the load
is released, any deformation is permanent. (The plastic slider is like a box with
static friction and dynamic friction that evolves with the strain.) Hence if the load
is removed, only the spring relaxes, but the slider remains in a state of permanent
deformation.
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l |

Definition 6.4.8. The hardening modulus or strain-hardening rate® is denoted H
and is a function of the equivalent plastic strain, H = H(&"). It is defined to be the
instantaneous slope of the graph of flow strength versus equivalent plastic strain,

dY (eP)
HeH)=—52>0
(&) ==z 20
with equality for non-hardening models such as the “perfectly plastic model”, which has
H(eP) = 0 for all €7, and inequality otherwise, which corresponds to models of strain

hardening.

Finally, we observe that in plasticity,

the stress and the rate of plastic strain are co-directional, i.e.,

c>0 < >0, o<0 <= &<,

or in words, a tensile-directed stress must tend to cause elongation, and a compressive-
directed stress must tend to cause contraction. As such

&P o

£ _ 9 P|J_*Pi
eP] o]

— P = ¢ .
o] o]

6.4.3 Rate-independent, isotropic hardening

Assume we are given a form of Y (£F) such that for every attainable value of the equivalent
plastic strain, we can identify the value of stress associated with yielding there. We then
have two governing principles:

1. Plastic strain cannot increase when |o| < Y (7). This is said to be the elastic state.
Hence
lo] <Y (el) = ¢ =o.

2. Plastic strain may increase when |o| = Y (7). This is said to be the elastic-plastic
state. Hence
lo| =Y (") = ¢P #0 possible.

Note the careful wording in the second principle. It is not guaranteed, only possible, that
we have a nonzero plastic strain rate when we are “on the yield surface”. In fact, when
lo| = Y(EP), we may either have:

« Elastic unloading: |o| = V(&) and ¢¢ < 0, such that & # 0 but £ =0, or
« Plastic loading: |o| = Y/(é7) and ¢é > 0, such that & # 0 and £ > 0.

The plastic loading case is the “interesting” case here, because it represents an evolution
of the plastic strain. Namely, in order to maintain a state where £° > 0, we must have

d d
that |o| = Y(¢F) and that £|0| = ﬁY(ép). Combined with the consistency condition,
we arrive at the following flow rule, or evolution equation, for the plastic strain rate

el

20bserve that this is a “rate” of hardening per increment in equivalent plastic strain, not a rate with
respect to time.
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Key Equation 6.4.9 (Flow rule, one-dimensional, rate-independent, isotropic hardening)

In rate-independent, isotropic hardening, the plastic strain rate ¢ evolves according
to the equivalent plastic strain rate |¢F|, the equivalent stress |o| relative to the
hardening function Y (7), and the direction of the stress power o¢ as:

0, lo| < Y(F) (elastic state)
5 = [0} lo| =Y () but oé <0 (elastic unloading)
#@”)é’ lo| =Y (eF) and o¢ >0 (plastic loading)

Remark 6.4.10: It may be helpful to think of time derivatives instead as strain
increments, i.e.:

e Elastic state: if |o| < Y(F), and an increment of strain de is applied, then
de? =0 (and dz¥ = 0). Note that do = Ede.

e Elastic unloading: if |o| = Y (£¥), and ode < 0 <= sign(o) # sign(de), and
an increment of strain de is applied, then de¥’ = 0 (and d¥ = 0). Again,
do = Ede.

e Plastic loading: if |o| = Y(e7), and ode > 0 <= sign(o) = sign(de), and an
increment of strain de is applied, then de? # 0 (and def > 0). In this case,
particularly, de¥ = de — do/E, with |0 + do| = Y (EF + déP) and de¥ = |de?|.

Remark 6.4.11: During the elastic state or during elastic unloading, the slope of the
(true) stress-(true) strain curve is equal to the elastic modulus E. However, during
plastic loading, the slope is given by a tangent modulus,

EH(EP)

Bian = ————2_
T B+ H(EP)

I Exercise 6.4.12. AKG 3.13, 3.11.

6.4.4 Rate-dependent, isotropic hardening

Some materials (like hot metals) exhibit a dependence of the flow strength not only on
the plastic strain, but on the plastic strain rate. In general, to achieve a faster plastic
strain rate, a higher stress must be applied. Accordingly, we generalize the concept of
the hardening function Y to include a rate-dependent term. Specifically, we assume that
the wiscoplastic flow strength S(é¥, &) can be written in the form

~p m
SE" &) =Y (") () :
€0
with the usual rate-independent hardening function Y (£¥') being multiplied by a term
which depends on the strain rate €7 nondimensionalized by a reference strain rate &g > 0,
raised to a rate sensitivity parameter 0 < m < 1. Note that €9 and m are usually taken to
be material constants. When that as m — 0, we recover the rate-independent formulation.
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When m = 1, the behavior is linearly dependent on the strain rate, as in a Newtonian
fluid.
When the material is in a state of plastic loading, we now have the condition that

lo| = S(eF,&"), which when combined with the consistency condition leads to the
following flow rule:
1/m
P — ( |o| ) o
Y(eP) [of
—_———
&P

Recall that at higher temperatures, the plastic behavior of metals becomes heavily
dependent on the strain rate. Above T > 0.5T),, the general form given previously
is not specific enough. In particular, we need to build in an explicit temperature
dependence. This happens by replacing the previously constant material parameter g
with a temperature-dependent rate sensitivity parameter,

o= éo(T) = Aexp (— 2.

where we have used the familiar Arrhenius relationship as a model. Here ) is an activation
energy corresponding to the energy required for lattice self-diffusion, and R is the gas
constant. Note that the parameter A has units of inverse time, or frequency.

The following flow rule summarizes both cases:

Key Equation 6.4.13 (Flow rule, one-dimensional, rate-dependent, isotropic hardening)

In rate-dependent, isotropic hardening, the plastic strain rate ¢7 evolves according
to the equivalent plastic strain rate \éP |, the stress o, and the strain rate sensitivity

parameter m according to
1
éP:ég< o] ) "o
Y (P) o]’

. Jconst., T <0.357,,
* | Aexp(—Q/RT), T > 0.5T),

where

Note that in the high-temperature case, the flow rule can be rewritten to solve for
Y (€P) in order to show that it, too, also evolves with temperature. For 0.357}, <
T < 0.5T,,, the activation energy is a complex function and the simple Arrhenius
relationship cannot be used.

In the high-temperature (7 > 0.57;,) viscoplastic model, there is no more
formal yield stress, i.e., Y(0) = 0. The immediate consequence is that for
all nonzero stresses, plastic strain occurs:

lo] >0 = |€P] >0

Exercise 6.4.14. AKG 3.18. Show that if n = 1, we recover the Maxwell model (hint: let
B =1). Moreover show that if n >> 1 we recover a rate-independent model with S like an
effective yield stress.



86 Solid Mechanics

Yield threshold

For some materials (0.35T;,, < T < 0.5T},), it is necessary to introduce a yield threshold
Yin(€F) > 0 for each value of 7, such that yield may only occur when

o] > Yin(E7);

note the strict inequality. This formulation is more general than the standard isotropic
hardening model, which results in plastic flow for any stress level.
With this yield threshold the flow strength becomes

S(EPEP) = Vi (EP) + Y (ED) <5P>m ,
€0

so that )
zP

o] = Yin(") = Y (") () :

€0

which yields the following form of the flow rule:

o <\a| —nh<ep>>”m o

TN YE

o]’

where the Macauley angle-bracket notation means

<u>;{0’ uw<0

U, u > 0.

Hence, when |o| < Y;,(€F), the response is purely elastic, and plastic flow only occurs
when |o| > Yin(£F). In the special case when Y;,(é7) = 0, we recover the usual rate-
dependent, isotropic hardening yield threshold. Recall that in that formulation, plastic
flow occurs for all non-zero values of |o|.

Remark 6.4.15: Another special case is worth mentioning. If we take the threshold
strength to be a constant, say Y;;, = 0, = const., and assume a perfectly plastic
response, Y = const., we are left with

ol = oy + k[e”|™,

where k acts like a viscosity. The units of k are exactly those of a viscosity when
the sensitivity parameter m = 1, in which case we have the Bingham viscoplastic
model,

ol =0y + Np’ép|a

where we have rewritten £ as the plastic viscosity p,. This model is appropriate for
mayonnaise and toothpaste, among other materials.

6.4.5 Rate-independent, kinematic and isotropic hardening

Recall that for most materials, the isotropic hardening model is only an idealization.
Rather, if the direction of stress is reversed post-yielding, the yield strength in the reverse
direction is typically experimentally seen to be lower than the flow strength upon initial
de-loading (the Bauschinger effect). The physical explanation for this effect is two-fold.
For the sake of concreteness, let us assume that the initial direction of stress was tensile,
and thus the reverse direction of loading is compressive.
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1. Bringing the material past its initial yield point in tension resulted in cold-working
(strain-hardening) of the material, which generated a great deal of dislocations,
most of which “got stuck” at grain boundaries or at obstacles like precipitates. This
generates back stress in the material, because the dislocations are “repelled” from
each other where they are piled up. Then, during the reversal of loading, the back
stress makes it easier to move these dislocations in the reverse direction.

2. Upon reversal of loading, some of the dislocations generated as a result of the
compressive loading are “equal and opposite” to those generated as a result of the
tensile loading. Therefore, they can “cancel each other out”, and thus the net effect
of the original (tensile) strain-hardening is lessened, resulting in a lower apparent
yield strength in compression.

Therefore, in order to describe the flow rule for a kinematically hardening material,
it is necessary to incorporate the effect of the back stress in the free-energy function
which is then used to derive the dissipation inequality. Namely, we will leave the elastic
free-energy contribution unchanged, but prescribe a model for the plastic free-energy
function which records the effect of the back stress. Specifically, we write

¢ =yF +9F
= 1E(eE)2 +loa
2 2 ’
where C' > 0 is the back stress modulus and A is a dimensionless strain-like internal

variable that is work conjugate to the back stress. We will assume that A follows an
evolution equation

A=¢l —yAeP  A0) =0,

where v > 0 characterizes the dynamic recovery of the model. The important consquence
of this formula is the development of the back stress term and the effective stress term

Oback = CA = 0Ocff = 0 — Oback-

Essentially, we will use o everywhere we previously used o, as this effective stress now
accounts for the “offset” of the back stress®. Hence the co-directionality assumption
becomes
P
nP = €  Oeff 0 — Oback
|€P‘ ‘Ueff‘ ‘0— - Uback|

Moreover we will recast dY/déP to be the isotropic hardening modulus His,, and
introduce an overall hardening modulus which includes the dynamic recovery constri-
bution,

H = Hiy, + C(1 — yAn").

Then the steps of the computation of the flow rule matches those for the case of
isotropic hardening, and we have the following:

Key Equation 6.4.16 (Flow rule, one-dimensional, rate-independent, kinematic harden-
ing)

In rate-independent, kinematic hardening, the plastic strain rate é¢¥ evolves accord-
ing to the equivalent plastic strain rate |¢¥|, the effective stress oeg relative to the

3Then, the rate of change of free energy can be expressed as =P +CAA = 0ef + opacke’ — CyA%ETr,
for which the dissipation inequality becomes D = (gegn® 4+ CyA?)E" > 0.
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hardening function Y (7), and the direction of the effective stress power o.gé as:

0, oot < Y(EF)  (elastic state)
e =10, oot = Y (EF) but o.gé <0 (elastic unloading)
MLHE', oot =Y (EF) and o.gé >0 (plastic loading)

We can still use the usual models (e.g., power-law, Voce) for the form of the hardening
function Y.

6.4.6 Rate-dependent, kinematic and isotropic hardening

We can apply the same generalizations as in the purely-isotropic case to a model which
includes temperature dependence and an (optional) yield threshold to attain the flow
rule for rate-dependent viscoplasticity with kinematic hardening. The major difference is
the use of geg in place of o:

_ 1/m
N .0<0eff—Yth(5P)> / Ocff

g =¢ — y
Y(eF) |Oett|

where for T' > 0.57,,,

gg =¢€o(T) = Aexp (—}?T) )

6.5 Constitutive theories for three-dimensional plasticity

Now we can extend the concepts developed for one-dimensional plasticity to a full three-
dimensional theory. The reasoning is identical to the one-dimensional case, but in general
we will be working in terms of tensors, not just scalars. However, we will make use of the
von Mises (or equivalent tensile) stress o,

_ 3 1
0= \/;Wl = \/2 (011 — 022)% 4 (092 — 033)% + (033 — 011)?] 4 3(0F, + 033 4 03)),

and analagously we will define the equivalent tensile plastic strain rate " as

- 2. 2 . ) ) ) ) ) 4. ) )
Sl \[))\ep\ = \/9 [(E11 — €22)? + (€22 — €33)% + (€33 — €11)%] + 5(6%2 + €53+ €31

Here, the tensor &” is the three-dimensional plastic strain rate tensor, which comes
from the additive decomposition of the strain tensor into elastic and plastic parts,

e=el el = e=2¢F 4 &F.

Analagous to the factor 1/3/2 in the definition of the equivalent tensile stress, the
factor 1/2/3 in the definition of the equivalent tensile strain rate connects this function
of a three-dimensional strain state back to a uniaxial test. Moreover, the factor of \/2/3
ensures that the rate of plastic working can be written entirely in terms of the equivalent
tensile stress and the equivalent tensile strain rate, o - €X' = 5"

Finally, the equivalent tensile plastic strain is the integral (accumulation) of the

equivalent plastic strain rate,
t

el = EP(T) dr.
0

Again, the integration variable 7 need not correspond to time; rather, it represents an
integration over the plastic loading history of the specimen.
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Example 6.5.1
Consider two rigid-plastic cubes with initial side lengths 1. One cube is stretched in
simple tension such that the new side lengths are 4, 1/2, and 1/2. The other cube
is stretched in plane strain tension so that the new side lengths are 4, 1, and 1/4.
Which cube has a higher equivalent plastic strain?

Solution. For a rigid-plastic material with a constant (non-changing) flow direc-

tion,
2
AP = As = \/;|As].

In the first case € = 0 in the reference configuration, and the final strain is

In(4/1) 0 0
e]=] 0 In((1/2)/1) 0
0 0 In((1/2)/1)

so that
\/7|€| \/7{ ln4 + (In( 1/2)) (ln(1/2))2}1/2 = In(4)

For the second case

In(4/1) 0 0
el=| 0 In(1/1) 0
0 0 In((1/4)/1)

and the same computation yields é° [ In(4) > In(4
Therefore the plane strain tension sample has attamed a higher equivalent plastic
strain, and has therefore hardened more.

Remark 6.5.2: It will often happen that both sides of an equation in a plasticity
problem will be expressible as rates, i.e., as time derivatives of quantities. If there is
no explicit rate dependence, then both sides can be freely integrated with respect to
time.

6.5.1 Rate-independent, isotropic hardening

For small deformations (strains up to about 5%) wherein the small elastic strain tensor

e can be used, the theory is very closely related to the one-dimensional case. In the

case of the plastic strain tensor, we typically use the Hencky strain € = In U. Then, the
total strain follows the decomposition

€:€E+€P, treP:O,
from which it follows that

e=ePt+el,  wel=o.
The rate-of-working per unit volume is then

b=0c-é¢=0-¢ +o e,
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E is recoverable, so the dissipation is entirely due to the

P s

but the elastic stress power o - €
plastic stress power. Moreover, because &7 is deviatoric, the tensor contraction o - &
equivalent to o’ - é¥ so the dissipation inequality reads D = ¢’ - ¢ > 0. The stress o
depends only on the elastic part of the strain, with the usual small-deformation elastic
constitutive relation

o =2G(e?) + k(tr eP)L.

On the other hand, the plastic part of the strain evolves according to the flow rule,
which in three dimensions is given by the codirectionality between the stress deviator and
the plastic strain rate:

Observe that the result of the three-dimensional co-directionality assumption is a relation
between the stress and the plastic strain rate; this is a hallmark of plasticity theory.
Putting this together and rearranging, we see that

e=¢b+e”
1+v. v, . 3.po0’

= — = I+ |26PZ |,
[ E ‘7 E(t”)]Jr{zg 5]

We can integrate both sides in time and work in terms of plastic strain increments, which
is more useful if the stress state is known a priori. Namely,

3 O'/--
2deb 4
2% & |

1+v v
dEZ‘j = {E daij — Eakk5ij:| +

L

where the first bracketed term is the increment in elastic strain de;;, and the second

bracketed term is the increment in plastic strain def;.

The codirectionality flow rule is sufficient to describe the behavior of a specimen
when it is possible to go “directly” between an initial and a final state, for example by
computing an integral over the plastic strain increment equation. For other situations
when a distinct evolution equation is required, the flow rule has the evolutionary form

(L)
Il

=" =x (BG +31(51(5P)) (U; é) ’

where H (") = dY (") /dz" is the strain-hardening rate as before, and the switching
parameter x is given by

0, < Y(eP) (elastic state);
X =10, c=YE) but o’ - £€<0 (elastic unloading or neutral loading);
1, cg=Y(@E")and o’ £ >0 (plastic loading).

Also as before, a particular model for Y (£F) (for example, a power law relationship) may
be specified. The benefit of this type of formulation is that even though the strain state
is a tensor, the hardening function is still entirely specified by one scalar, the equivalent

plastic strain 7.
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Beyond small deformations

In some engineering metals which can undergo large plastic deformations, it is common and
convenient to neglect the elastic part of the strain. In this rigid-plastic approximation,
it is assumed that eiEj < 55 so that all the strain is plastic strain. Equivalently, the
rigid-plastic model is the limit where £ — oco. Either way, the evolution for strain

simplifies to
/

3 o’
dey; = §d§P % (rigid-plastic).

If the strain rate tensor is known, the deviatoric stress may be expressed by the inverse
of this equation,
(V) .
Tij = < T3ZP ) Cij>
€

because o = Y (¢) during plastic flow. Note also that we have re-introduced the strain
rate tensor and accordingly have replaced &° with 7.

Remark 6.5.3: In this case (and in plasticity in general), only the deviatoric stress
state can be computed directly from a given strain state. The hydrostatic part of
the stress can only be represented by an undetermined scalar field,

2Y(€)\ .

where P must be determined by traction boundary conditions.

I Exercise 6.5.4. AKG 3.2 through 3.10, 3.12.

6.5.2 Rate-dependent, isotropic hardening

The basic principles of the three-dimensional rate-dependent model are exactly the same
as in the three-dimensional rate-independent model. In particular, we have the same
decomposition of the strain tensor and the strain rate tensor, and we still require a flow

rule based on codirectionality, /

.p 3:pO

e = 55 g
The difference comes in when we specify a form for the flow strength. Just like in the
one-dimensional case, instead of Y (£7), we will use a viscoplastic flow strength model
S(é%,€7) that depends on the equivalent plastic strain rate in an explicit power-law
form: o m

SE".E) =Y (E") (5) ,
€0
where again 0 < m < 1 is the rate sensitivity, and &g is a reference strain rate.
For low absolute temperatures, the reference strain rate £g is roughly constant, but

when T > 0.57},, then the reference strain rate must explicitly depend on temperature,

g0 =¢éo(T) = Aexp (—}?T) (T > 0.5T;,).

In either case the flow strength model can be arranged to provide the evolution equation

for &7 L
p . o m
g =& (Y(€P)> .
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This, together with the statement of codirectionality,

fully specifies the constitutive model. Importantly, as in the one-dimensional case,

the rate-dependent (viscoplastic) model has the result that the plastic
strain rate is non-zero whenever the stress is nonzero; equivalently, there
is no purely elastic range at all!

If, however, a yield threshold Y;,(¢7) is modeled, it may be incorporated in the same
manner as the one-dimensional formulation, namely that the evolution equation for ¥

becomes Y
éP — £ o— Y;fh(ép)
°\ YD) ‘

Remark 6.5.5: The flow rule, together with any other constitutive equations of any
plasticity model, require initial conditions. The standard set of initial conditions set
all initial strain to zero at time zero, and set the value of the hardening function to
the yield stress at time zero,

e(x,0) = e”(x,0) =0; Y(x,0) =0y

I Exercise 6.5.6. AKG 3.19 through 3.24.

6.5.3 Rate-independent, kinematic and isotropic hardening

To account for kinematic hardening, we again must modify the free-energy function in
the same way we did for the one-dimensional case: by adding an explicit term that
accounts of “plastic free energy”, so that ¢ = ¥ + . We may assume the usual elastic
theory holds, so the elastic free energy is quadratic in the elastic strain. For the plastic
free energy we define a dimensionless strain-tensor-like internal variable A, which is
symmetric and deviatoric (like el ), as well as a back stress op,ck, such that

1
pf = §C|A|2, Oback = CA
for some back stress modulus C' > 0. Then, the effective stress which accounts for

the driving force that creates the Bauschinger effect, as well as its direction N¥, are
defined to be

_ P _ Oeff
Oeff = O — Oback; N* = ‘O’
eff|

with the equivalent tensile effective stress

Off = \/§O' ‘
g, = — .
eff 9 eff

Then the codirectionality flow rule reads

. 3 - pOef
EP = 76P_7‘3'
2 Oef
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If plastic loading is happening (equivalently, if both Geg = Y (£F') and N¥ - & > 0, note
the strict inequality), then the strain state evolves as

() (v

A =¢ef —yAZP

dY (g7) 3 \/§ P
H=—"—" e -
2P +C (2 Q'yA N
N—_——

=Hiso

where

is the total hardening modulus. Note that the plastic strain rate does not change, é¥’ =0,
if either Geg < Y (2F') (corresponding to the elastic state), or gog = Y () but N - & <0
(corresponding to elastic unloading in the plastic state or neutral loading in the plastic
state, respectively).

6.5.4 Rate-dependent, kinematic and isotropic hardening

Hopefully the pattern is clear by now. In the case of rate-dependent plasticity with
kinematic hardening, we combine the features of the three-dimensional rate-dependent
theory — namely the lack of yield condition, which is replaced by an explicit equation
for £F (for example in power law form) — and the features of kinematic hardening,
which means that everything is now dependent on the effective stress o.g and the
equivalent tensile effective stress gog. Explicitly, the flow rule (assuming a power-law
rate dependence) is given by

. P 3;P0-eﬂ'
g ==& —,
2 Oef
A =¢&P —yAET,

where Y;,(¢F) is the optional threshold yield strength. For high temperatures, it is

appropriate to take the reference strain rate £y as the usual Arrhenius form.

6.6 Large-deformation plasticity

The previous sections fundamentally assume an additive decomposition of the strain
e=cP 4+ef

and hence an additive decomposition of the strain rate
e=eb &b

Even if the logarithmic strain measure (i.e., € = InU) is used, the concept of an
additive decomposition of strain cannot account for the most general case where both

elastic and plastic parts of the deformation can be made arbitrarily large. For example,
a broad class of polymers can undergo such large elastic and large plastic deformations.
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The “finite” characterization of such a general, large-deformation model for elastic-
plastic deformation assumes a multiplicative Kroner decomposition of the total
deformation gradient F,

F = FFF?,
where the elastic part of the deformation gradient (or the elastic distortion) F¥
physically represents local stretching and rotation of the microstructure, and the plastic
part of the deformation gradient (or the plastic distortion) FP physically represents
the local inelastic deformation, for example due to the flow of defects in a metal or due
to the change in free volume in a polymer.

Remark 6.6.1: Although we define F as the gradient of a motion function, the two
tensors F¥ and FP are not necessarily the gradients of anything; in other words,
there does not necessarily exist an “elastic motion” x* for which F¥ = V.
Rather, we can only think of F¥ and F¥ as linear transformations that operate
sequentially on a vector in the reference configuration dX. Occasionally the vector
dl = FPdX is said to reside in an intermediate state (or, in the context of polymers,
in a relazed state). In this framework F” is seen as a linear transformation from
the reference configuration to this intermediate configuration, and F¥ is seen to
transform vectors from the intermediate configuration to the deformed configuration.

Correspondingly, we can define
JE = detFE > 0

and
JP = det F¥ > 0;

if the plasticity is modeled as incompressible (common for metals, but not necessarily
the case, as for polymers) it follows that J© = 1 and therefore that J = J¥,

Moreover, recalling that the spatial velocity gradient L = Vv, L : dx — dv is related
to F by

L=FF !,

we can use the Kroner decomposition to arrive at the relation

L= FF—l — FEFE—l + FE(FPFP_l)FE_l

(note that here, the notation FZ~1 refers to the inverse of the tensor F¥). If, by analogy
with L, we define an elastic rate of distortion L¥ = FFFF~1 and a plastic rate of
distortion LY = FFFP~! we have

L=LF t FFLIFFP- L

Recalling also that L can be decomposed into its symmetric part D, which represents
a rate of stretching, and its skew part W, which represents a rate of spinning, we can
also analogously define tensors D¥, W¥ DP and W7 such that e.g.,

LY =D" + W7, D” = skwL”.

The rate of stretching tensor D is the large-deformation analog to the strain-rate tensor
¢. By analogy, then, it can be see that DY plays the role of ¢ in the large-deformation
theory. For example, we will see that the evolution of the equivalent plastic strain can be
written in terms of DP (and stress-like quantities similar to our old friend &”).
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From the definition of L”, it can be seen that F¥ evolves according to
F’ = LYFP
For isotropic materials it is commonly assumed that
wf =0 (isotropic materials),
which specializes the preceding evolution equation to
F’' =DFFP

In other words, a flow rule on D¥ is necessary and sufficient to prescribe how F behaves.

Remark 6.6.2: In this model, prescribing the evolution of F¥ is sufficient to prescribe
everything in the model assuming (as is typical) that the total deformation F is
known. Moreover, we can then determine the body’s stresses which are traditionally
taken to depend only on the elastic part of the deformation, and F¥ = FFF—1,

To complete the plastic part of the theory, we need to specify exactly how D (or, more
generally, LT) relates to the other flow variables. This requires the identification of a
driving stress for plasticity in the general large-deformation case. In the small-deformation
case we assumed that the deviatoric part of the Mises stress was the driving stress for
plasticity, and this formed the crux of our co-directionality assumption.

Since we are working with large deformations, recall that the Cauchy stress is denoted
by T. We define an elastic second Piola stress

SE = JEFE—ITFE—T

where FE~T denotes the inverse transpose of the elastic part of the deformation gradient.
Then, defining an elastic right Cauchy-Green tensor

cf =pE'FE
we can define the Mandel stress,
M¥ = cFgF.
We denote the deviatoric part of the Mandel stress by M, i.e.,

1
MF =MF — Str (M1

Key Equation 6.6.3 (Co-directionality assumption for large-deformation plasticity)

In a large-deformation plasticity theory, the rate of plastic stretching D¥ is assumed
to be co-directional with the deviatoric part of the Mandel stress, MOE , with the
plastic flow direction N¥ thus given by

DY M¥

NP = —— = .
D [ME|
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An explanation for the sudden appearance of these new stress measures, as well as
the justification for the new co-directionality assumption, requires a derivation of the
equations of equilibrium for this case of large-deformation elastic-plastic deformation.

We approach this by the virtual power technique. Consider a part P of a body
undergoing deformation. There is a traction field t and a body-force field b such
that the total external virtual power is given by

Wext:/ t(n)-frdA—ir/wade
oP P

for a particular virtual velocity v. Mathematically, the virtual velocity represents
an arbitrary vector with units of velocity. Physically, it represents any admissible
velocity of the part of the body, and we can make particular choices for v to specalize
the virtual work equation.

Meanwhile, to compute the internal virtual power, we make the assumption that
the internal virtual power has two sources: one due to a macroscopic stress S™ar
conjugate to the elastic distortion rate L¥, and another due to a microscopic stress
Smicr conjugate to the plastic distortion rate LY. To this end, writing

gradv = L¥ + FEFLPFF!
for our virtual velocity v, we compute the internal virtual power as

1

ot = Smacr . ]:E Smicr . ]3P> AV
Wint /7)( + JE

The factor 1/JF is due to the fact that L” is a tensor in the intermediate space,
and hence we need to map the “plastic stress power term” to the deformed space.
The statement of the principle of virtual power has two parts:

1. For any choice of v,
Wint = Wext-

2. For any choice of v subject to the constraint that v(x) = a + Qx for all x
where a and €2 are spatially constant, together with L = @ and LP = 0,

Wint = 0.

Then, let us first make a choice of v such that L¥ = 0. For this choice, the first
part of the principle of virtual power yields the result

t(n) = S™an,
div 8™ + b = 0.
The second part yields the result

gmacr _ (Smacr)T )

It follows that this macroscopic stress, or in other words the stress tensor which is
work-conjugate with the elastic disortion rate, is none other than the Cauchy stress!

Let us separately choose v = 0 with L” arbitrary. Using T now in place of S™acr
the second part of the principle of virtual power yields the result
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Smicr — JEFETTFEfT
This definition motivates the identification of S™ as the Mandel stress. In other

terms, the Mandel stress is the stress measure which is power conjugate to the plastic

distortion rate.
With these results, the actual internal expenditure of power can be written as

1
b = T.LE ME-LP> av.
Wi t /7)< +JE )

or in terms of the elastic second Piola stress S¥ introduced previously,

1 . 1
it = —_SF.¢cF ME-LP> dv.
Wiet /73(2JE + v

Having defined these quantities, the rest of the statement of the flow rule is much the
same. In particular, we can define equivalent scalar quantities for the plastic strain and
the driving stress as before (which we will still refer to as the equivalent stress and the

equivalent plastic strain):
_ 3.5 -p 2
UE\/;MO\, € E\/;\DPL

Remark 6.6.5: Although we have defined the equivalent plastic strain rate in the
same way as was done in the small-deformation plasticity theory, here the quantity
\/2/3|DP| cannot be directly interpreted as the time rate of change of some strain
measure. More generally, DY is a “rate-like descriptor” quantity, but unlike &, it is
not the time derivative of a meaningful quantity.

It then follows that the basic flow rule for isotropic materials becomes

DP: §€—PM€‘
2 o

Since we have re-introduced the same scalar quantities as the small-deformation model,

the same one-dimensional flow-strength relations can be used to describe
the evolution of the equivalent plastic strain in terms of an evolving hard-
ening rule and other internal variables. Moreover, in a rate-independent
theory, the same loading-unloading and consistency conditions apply, and
can be written in terms of the equivalent stress and equivalent plastic
strain measures given here.

Example 6.6.6
As a simple but explicit example, a complete statement of the flow rule (i.e., the
evolution of plastic deformation) for a rate-dependent model is given by

FF = DPFF
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with 5
2 o

= 1/m
p . g
e =& (Y(EP)) 9

for some material parameters &g and m, and a prescribed hardening function Y (£¥),
for example

where

for some K, n.

The large-deformation theory can be closed by specifying how the stresses are related
to the deformation. As mentioned previously, it is generally taken to be the case that the
stresses are related to only the elastic part of the deformation, described by FE. In view
of this, we can prescribe a free-energy function that depends only on quantities derived
from F¥. Let the polar decomposition of F¥ be denoted by RFU¥.

For small elastic strains it is appropriate to simply assume a logarithmic strain measure
similar to that used in the small-deformation theory, i.e.,

EF = InU?,
and to assume a strain-energy function which is quadratic in this strain measure,
g2, L E\2
¥ = GIEEP + Sn(bEF)?,

for a shear modulus G and a bulk modulus k. Then,

o
ME — — CEE
OEE C
with )
C=2G (]Isym - 3I@I) +rkI®I
and finally

1 T
T= J—EREMERE :

For larger elastic strains, as in the case of polymers, this theory is nicely compatible
with the usual hyperelastic material models, now expressed in terms of FF. In this
framework, if the free-energy function is specified in terms of the invariants of C¥, it
follows that

o

8§ =255, T=CUSh

Example 6.6.7

For a simple example, we consider take the compressible neo-Hookean free-energy
function, expressed as the sum of a deviatoric part and a volumetric part, given by

1 = 1
Y = 5G(trcE —3)+ 5h(J - 1)2

where CE = J=2/3CE represents the isochoric part of CEZ. The corresponding
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Cauchy stress can be expressed in terms of the deviator of the isochoric part of B¥
as

T = %1’35 + K(J - DL




7 Fracture

A common failure mode of solid objects is fracture, which is the parting of the solid
into two or more pieces. Thus far, we have considered the mechanics of homogeneous
solid materials, but in reality all solid bodies contain cracks (or other small defects) at
some length scale, which grow during service and eventually cause fracture. The goal
of this chapter is to develop a fracture criterion and discuss the stress field around a
crack.

Remark 7.0.1 (Characterizing fracture): Fracture can be characterized over two length
scales: globally at the length scale of the part or specimen, and locally at the length
scale of the initial crack. At each length scale, the fracture can be classified as
ductile, meaning it is accompanied by plastic flow and deformation before failure, or
brittle, meaning the failure is sudden, catastrophic, and accompanied by little to no
deformation. Specifically:

« globally brittle fracture is characterized by little or no macroscopic inelastic
deformation, with a plot of load as a function of displacement behaving linearly
until fracture

o globally ductile fracture is characterized by considerable macroscopic in-
elastic deformation, with a nonlinear regime of the load-displacement curve
developing before fracture

o locally brittle fracture is due to the cleavage of grains in the microstructure,
the decohesion along grain boundaries, or both, which leads to negligble
amounts of plastic flow within grains

e locally ductile fracture is due to the nucleation and growth of voids at
microstructural inclusions or precipitates in the material, accompanied by
plastic flow and tearing of the microstructure near the crack tip

It is worth emphasizing that fracture can be, e.g., locally brittle and globally ductile,
or any combination of the above. In general, ductile fracture requires more energy
than brittle fracture. The extra energy expended in ductile fracture is dissipated as
a result of plasticity. (Ductile failure is also “safer” in that it is not catastrophic,
and a larger amount of plastic deformation is easier to observe.) In this section
we will consider globally brittle fracture with a small local plastic region at most.
This assumption allows us to work from the theory of linear elasticity, which in turn
allows the following development to be a universal picture for crack propagation.

Remark 7.0.2: In metals having BCC or HCP crystal structures (like most steels), but
not in metals having FCC crystal structure (like aluminum), the fracture behavior
is temperature-dependent. At high temperatures, thermal agitation assists the
motion of dislocations, and fracture is ductile. But below a critical ductile-to-
brittle transition temperature, the thermal motion of dislocations is reduced,
the intrinsic lattice resistance increases, and the mechanism of fracture turns brittle.

100
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For certain steels, the ductile-brittle transition temperature can be as high as 0°C,
which is of importance in common engineering situations.

Recall that in isotropic linear elasticity, if a specimen is pulled in tension with far-field
applied stress o, the stress concentration factor K; around a feature with characteristic
length a and radius p scales as K; o /a/p, such that omax < K00 X 0ooy/a/p. A
crack is really just a special case of this stress concentration situation with p — ag, for
ap the interatomic spacing between lattice rows. We therefore expect opmax to scale as
Osov/a. To this end we define a stress intensity factor which depends on the far-field
applied stress and the crack geometry exactly in this way. We can then consider a failure
criterion on this stress intensity factor to be an equivalent criterion on o,,x, which is
exactly the condition for brittle failure.

Definition 7.0.3. For a crack of characteristic length a subject to a tensile far-field
stress 0o, the mode I stress intensity factor! K is defined to be?

Ki = QoxVTa,

where @ is a nondimensional geometeric “configuration correction factor” that accounts for
the particular crack geometry. The development of K7 in terms of a geometry-dependent
Q provides the elegant result that the theory based on K7 is applicable for all mode I
cracks!

Remark 7.0.4: The configuration correction factor () is a nondimensional quantity
that is, in general, a function of nondimensional geometric parameters, such as a/w,
where w is a characteristic specimen dimension in the direction of the crack. Values
of @ are tabulated for a variety of “standard” or common crack configurations (see,
for example, Appendix H of AKG); the order of magnitude of @ is typically unity.
In the special case where a < w, i.e. when the crack is located sufficiently far away
from the edges of the specimen that the specimen can be considered infinite relative
to the crack, we have Q = 1.

Example 7.0.5

Consider a two-dimensional plate with width w and length L > 3w. If there is
a crack of length 2a in the center of the plate aligned with the width direction,
and a far-field stress o, applied parallel to the length direction, the configuration
correction factor is given by

Q = Q(ajw) = \/sec (ra/w).

Observe that if w — oo, we recover ) = 1, the infinite-plate configuration correction
factor.

The qualifier “mode I” corresponds to a tensile far-field applied stress perpendicular
to the direction of the crack. In general, the far-field stress may also be applied in an

'Here, the subscript I represents a Roman numeral, and we say “K one”.

2Although their names are similar, it is important to distinguish between this stress intensity factor
(with units of stress times square-root-length, e.g. MPa m1/2), and the stress concentration factor
(which is a nondimensional stress ratio).
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in-plane sliding “mode II”, or an anti-plane tearing “mode III” (or some combination of
the above) when viewed from the crack. However, in most engineering applications, it is
phenomenologically seen that globally brittle fracture occurs in mode I loading whereby
the crack propagates in a direction perpendicular to the local direction of mazximum
principal stress. As such, the mode I fracture criterion dominates:

Key Equation 7.0.6 (Mode | linear elastic fracture criterion)

In mode I loading, the onset of crack propagation occurs if and only if

Ky = QUOO\/W = Kic,

where a is a length scale associated with the crack®, o is the far-field applied tensile
stress, and K. is a material property called the “critical mode I stress intensity
factor” or more simply the fracture toughness.

“Usually, a is exactly the length of the crack, but not always! The values for @ (e.g. in a table)
will also specify the corresponding way to define a and 0.

The fracture toughness Ki. measures the material’s resistance to crack propagation. Just
like values of oy, values for K. are obtained from standardized mechanical testing. For
metals, see the standard ASTM E399.

Remark 7.0.7: The measured fracture toughness for most materials is orders of
magnitude smaller than the theoretical ideal cleavage strength required to separate
neighboring planes of atoms, as in a perfect crystal. The culprit, as always, is the
unavoidable presence of micro-cracks, imperfections, and other flaws present in every
real specimen.

7.1 Elastic stress fields around cracks

It is instructive to describe how the elastic stress field changes from the far-field value
near a crack, which effectively acts like a perturbation; moreover, a sharp crack produces
a theoretical singularity in the elastic solution, a situation which we will rectify in the
next section.

Consider a crack with length 2a in an two-dimensional infinite body oriented in the
direction eq, and suppose the body is subject to mode I loading with a far-field applied
stress 0 applied in the es direction. Take the origin in polar coordinates to be at the
center of the crack. If the material is isotropic and linear elastic, then for § = 0 the stress
along the crack axis is given by

osov/a(l+1r/a)
V2ryT+7r/2a

This analytical solution was found by Charles E. Inglis in 1913; it was a foundational

result in the subject of linear-elastic fracture mechanics. Near the crack, when r/a is
small, the expression is approximately

o9 =0n(r=a+7r0=0)=

aoo\/5 _ KI
\2r V2rr

on(r=a+r10=0)~
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This argument can actually be generalized to develop a so-called “asymptotic crack tip
stress field” for this mode I loading, as long as r < a. If this assumption is true, then

o1t 1—sin () sin (3
J S ON 11 sin (8 sin (22

2 | = cos +sin (5)sin (%) | + [h.o.t.],
o V2mr 2 (8 30

12 sin (5) cos (7)

with o33 = 013 = 093 = 0 for plane stress, and o33 = v(011 + 022) # 0, 013 = 023 = 0
for plane strain. Similarly, it can be shown that the displacement field (u1,us) has

components
KI r
Ui =550/ %fl(eay) + ug

for i = 1,2, where f; is a scalar-valued function of the angle and Poisson ratio. Similar
expressions for o;; and u; can be written for mode II and mode III loadings, as well.
Importantly,

since the development of K1 and the local elastic stress fields comes from
a linear theory, superposition applies:

e to stresses,

G = \/%{Klfl(9> + Kﬂf11<9) I KIIIfHI(H)];

o to displacement fields,
1 7
ui = = %[Klgl(ea v) + Kugn (0, v) + Kigm (0, v)] + uo;

e and to stress intensity factors,
K=K + KD 4.+ K™,

as long as the far-field loading can be decomposed as

0o =08 + 0@ + ...+

7.2 The plastic zone

So far we have developed the requirement that in order for the linear-elastic fracture
criterion K1 = Kj. to hold on a region of size r near the crack tip, we must have r < a.
Clearly a is the characteristic length of the crack, but what determines r7 We know
that in a globally brittle situation, any amount of plasticity cannot occur close to the
specimen boundaries, and hence must be localized to a region near the crack tip. In
this case we can call the maximum value of r such that the asymptotic formulation still
applies the radius of the K-field, rk.

Remark 7.2.1: Mathematically, the statement that the asymptotic formulation still
applies at the radius of the K-field says that the K-field solution must give the correct
tractions at rk. In particular, suppose we let
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K
&(rg,0) = —

= 0
be the stress field in the region where the asymptotic formulation is valid (i.e., the
K-field). Then, we require that

t(TK) 9) = &(rKa 0) n,

where t(rk, 0) represents the actual traction vector at the point (rg, 6).

Moreover, within Tk, we must limit the amount of local plasticity. We know that some
local plasticity exists; if not, the K-field solution would “naively” suggest that oo — 00
as r — a (a stress singularity). In reality, oo will attain a maximum value, namely
the yield strength o,, everywhere within some (hopefully small) distance from the crack
tip. We call this the size of the plastic zone, rip, and it can be found by requiring?®
o22(r,0 = 0) = 0y

K 1 <K1>2
:Uy N T’Ipzf — .

099 = ——r
V2T, 2w \ oy

Hence 71, represents a characteristic length-scale of local plasticity. Only when ri, <
rxg < a do all of the assumptions in the linear-elastic theory hold, so this so-called
small-scale yielding criterion is a major requirement for the applicability of the linear
elastic theory. It can be similarly argued that all other specimen dimensions must be
much, much larger than 71, as well, so as not to induce edge effects that lead to global
ductility.

Key Equation 7.2.2 (Small-scale yielding)

The theory of linear-elastic fracture mechanics, namely the fracture criterion given by
K1 = K, together with the asymptotic formulations of the stress and displacement

fields, holds only if
2
1 [ K
a, (W —a),h > 15 x | — <I> ,
2w \ oy

where a is the crack dimension, W is the specimen dimension in the direction of
the crack, and h is the transverse dimension between the crack and the edge of the
specimen®. Note that the crack geometry and far-field loading strength determine
K7, so this condition is really a check on the applied load levels.

“The factor of 15 is chosen as a “rule of thumb”. It can be shown that when r/a = 0.1, or equivalently
rk = a/10, the asymptotic solution produces about a 7% error. Hence, if ri, = a/15, we have
r1p K 1 K a, as desired.

In words, the elastic solution only holds for distances r > rr,. But when 7y, is small
compared to any other length scales in the problem, the error in assuming the elastic
solution holds everywhere is negligible.

3For completeness we would also need to look at the non-zero ogss component (in the case of plane
strain), as well as the other non-zero components of stress near the crack tip, which contribute to &.
These values slightly change the size of rp, but our formulation based solely on 22 remains a good
approximation. This is wrapped up in the “insurance” factor of 15 that will be introduced shortly.
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7.3 Fracture toughness testing

In standardized testing (e.g. under ASTM E399) to obtain values of Kj., the following
general procedure is followed:

1. A notched and pre-cracked specimen is fabricated and tested until the onset of
crack propagation is detected.

2. At the corresponding value of o4, which causes the onset of crack propagation, the
apparent value of K. is computed. This value of K. is then used to compute the
characteristic length scale of plasticity in the specimen,

re=—1_—1 .
2w \ oy

3. If the characteristic length scale of plasticity r. is small enough (i.e., at least 15 times
smaller) compared to the crack length a and other in-plane specimen dimensions
(w — a), h, the test is valid. Otherwise the specimen must be resized.

4. The out-of-plane thickness B changes the apparent value of K. obtained in the
test. In general, as the thickness B increases from zero, K. first increases, then
decreases to an asymptotic value that corresponds with the plane-strain fracture
toughness. This asymptotic value of K, is taken to be K.

The reason for the thickness dependence is that when B is small (i.e., for thin samples),
the size of the plastic zone in the out-of-plane direction becomes commensurate with
the specimen thickness. Hence large-scale “dimpling” occurs, which causes macroscopic
plastic deformation near the area of interest, which is undesirable. This case corresponds
with plane stress. However, for large B, the plastic deformation is localized (as required
by LEFM), and the conditions approximate plane strain. Hence K. is also called the
plane strain fracture toughness. In general it is required that in order for the measured
value of K. to be taken as K., the thickness B must exceed 15 times the size of the
asymptotic plastic zone rp.,

2
1 (K
B>15x 2( IC) =15 X 7.

s Oy

Example 7.3.1

A standard sample of aluminum 6061-T651 has £ = 72 GPa and o, = 275 MPa. A
valid plane strain fracture toughness test reveals that the value of Kj. is 34 MPa
v/m, which corresponds to an asymptotic plastic zone of dimension r. = 2.4 mm, so
that a valid specimen must be at least 38.4 mm thick.

I Exercise 7.3.2. AKG 4.1 through 4.15.

7.4 Energy-based formulation

As an alternative to the onset of crack propagation criterion Ky = Kj., Griffith (1921)
proposed a criterion

G =0 (onset of crack propagation),
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where G is the energy release rate, a function of the free energy and the stress and
displacement fields, and G, is a material property called the critical energy release
rate or simply the toughness®.

For an ideally brittle material, G. can be thought of as exactly the energy required to
create two new atomic surfaces, i.e., G. = 27, where -y, is the surface energy of the solid.
For other classes of materials, the formulation is much more complex, but the general
idea is that G. is made up of (1) the energy per unit area of crack face which goes into
creating new surfaces, and (2) the energy dissipated to plastic deformation and other
localized fracture processes near the crack tip.

Meanwhile, the energy release rate G is the work done by external tractions minus
the change in free energy of the body, which is exactly the difference between the work
done on the body and the work stored as elastic energy in the body. This total is always
positive, and hence G > 0. In particular per unit specimen depth,

_ ou d

where da represents an increment of the crack length a. Here B is the (two-dimensional)
body and 9B is its boundary. Thus, G represents the energy per unit area of crack that
is “available” for crack extension. Only when this amount of energy per unit area is
sufficiently high does the crack advance.

When the external tractions are specified in terms of generalized forces P; with
corresponding generalized displacements A;, we can write’

N
dA;  d
Q_ZPiE—%/deA.

=1

In the most general case, G is computed using a J-integral, which is the integral of a
similar energy-difference quantity but taken over an arbitrary path surrounding the crack
tip. It can be shown that the value of the integral is path-independent whenever body
forces (gravitational or inertial) are negligible. This makes the integral much easier to
compute compared to the definition of G, because the path of J can be cleverly chosen
to simplify terms.

Suppose the body is planar (i.e., two-dimensional), and let T" be a closed contour
surrounding the crack-tip. Then, per unit specimen depth,

G= )= [ (vn= (Vo) (on)) ds,

where n represents the outward normal vector to the line element ds € T'.

Finally, it can be shown that the energy-based formulation and the stress-intensity
formulation actually coincide. This connection was made by Rice (1968), who showed
that for an isotropic, linear elastic material under small-scale yielding

1 1+v
g= E(KI2 + Kfp) + TKIQID

4Be careful! This use of the word toughness is in a completely different context compared with the
area-under-the-curve toughness. Rather, the critical energy release rate is a measure of fracture
toughness for a material

5Here, P; could represent a concentrated point force with A; a corresponding displacement, or P; could
represent a concentrated moment (e.g., from two very closely spaced equal and opposite forces), with
A, now the corresponding rotation.
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where
b= E

1—12

| FE, plane stress;
plane strain.

Hence if the loading is purely in mode I, then G = KIQ/E We can define Ki. = \/ EG,
such that
K=K <= G=0.

and the onset-of-fracture criterion is consistent.



8 Fatigue

Fatigue is the failure of components under the action of repeated fluctuating stresses
or strains. The key point is that if loads are cyclic or otherwise repeated, failure can
occur even when the magnitude of loading is smaller than the yield strength as measured
in monotonic tests! The underlying principle is that even if the macroscopic behavior
remains elastic, and even if the stresses are well below a material’s yield strength, localized
and permanent microstructral change occurs in the vicinity of defects, which progressively
grow until a critical crack size is reached. In this way, fatigue can be seen as a process
that occurs over a number of cycles. In summary,

even if the structure deforms elastically, multiple repetitions of very small
inelastic strains leads to cumulative damage ending in failure.

The classical diagnostic tool against fatigue failure is termed non-destructive evaluation
(NDE), whereby small cracks that are candidates for fatigue initiation are identified and
fixed before failure can occur. Typically, NDE is done several times over the service
lifetime of a part. To be conservative, the usual assumption is that if no crack is found
as a result of NDE, cracks having length equal to the resolution of the NDE tool are
assumed to exist. Then, the failure lifetime is dependent on the number of cycles it takes
this small crack to propagate to a critical crack size whereupon K; = Kj.. However, this
defect-tolerant approach is only one perspective.

In contrast, the defect-free approach assumes no cracks or defects. In this approach,
the failure lifetime is taken to be the number of cycles it takes to develop a small crack,
and the assumptions are mostly based on empirical data gathered at different applied
stresses or strains. The number of cycles between such a crack initiation and subsequent
failure is taken to be much smaller than the number of cycles to crack initiation. (The
defect-free approach is less conservative and is generally used for components which are
not safety-critical.) This chapter examines both approaches separately.

Remark 8.0.1: The concepts relating to fatigue were first developed in connection
to the railroad industry, during rapid railroad expansion in the mid-19th century.
However, as any MBTA commuter will recognize, fatigue is a problem that still
plagues rail systems today.

8.1 Defect-free approach

In the defect-free approach the game is to predict the number of cycles to failure, typically
denoted Ny, that corresponds to the period from the beginning of service to the initiation
of a crack as a result of fatigue. In this approach it is assumed that subsequent failure
is imminent after crack initiates'. In general, N ¢ can be found either by looking at the
stress in a region of interest (for example, near notches or other stress concentrators), or
by looking at the strain. Particularly, since fatigue is a cyclic process, we will look at
stress amplitudes and strain amplitudes in our modeling.

"More precisely, the defect-free approach assumes that the number of cycles to propagate a crack once it
has initiated is much less than the number of cycles needed to initiate the crack.

108
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8.1.1 Stress perspective (S-N curves)

Consider a specimen which undergoes a cyclic applied stress in the range omin < 0 < Omax-

Definition 8.1.1. The stress range Ao and stress amplitude o, are defined to be
1
A0 = Omax — Omin, Oq = 5Aa.

Definition 8.1.2. The mean stress o, is the average of the minimum and maximum
stresses,

Om = *(Umax + Umin)-

2

If 0, < oyuTs, the ultimate tensile strength, then experimental data for o, versus Ny
for a given value of o, can be plotted in a so-called S-IN curve. Note that by convention,
it is the “S” (i.e., 04) that is plotted on the vertical axis, and the “N” (i.e., Ny) that is
plotted on the horizontal axis. This presentation allows Ny to be read off if o, is known,
or the maximum allowable o, to be read off if Ny is a design parameter.

In experimental data of ferrous alloys (steels), an interesting phenomenon occurs.
There exists an asymptotic value of o, below which Ny — oo; that is, for sufficiently low
values of stress the specimen appears virtually immune to fatigue failure! The threshold
value of stress is called the endurance limit and is denoted oe.

Remark 8.1.3: For ferrous alloys, empirical evidence has suggested the following
correlation between the ultimate tensile strength oyrs in monotonic loading and the
endurance limit o,:

5, — it (”UQTS, 700 MPa)

Remark 8.1.4: For engineering purposes, materials which do not have an endurance
limit (for example, aluminum alloys) are typically assigned a “pseudo-endurance
limit”, which is taken to be the stress amplitude corresponding to Ny = 107 cycles.

8.1.2 Strain perspective (strain-life approach)

Consider a specimen which undergoes a cyclic applied strain in the range epin < € < €pax-

Definition 8.1.5. The strain range Ac and strain amplitude ¢, are defined to be
1
Ae = €max — €min, €a = §A5

Moreover the usual additive decomposition of strain into elastic and plastic parts yields
the following:

Definition 8.1.6. The elastic strain range and plastic strain range are defined as
the elastic and plastic parts of the strain range, respectively:

Ae = AP + AP,

The elastic strain amplitude and plastic strain amplitude are defined as the
elastic and plastic parts of the strain amplitude, respectively:

E p
€a =€, t€,.
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Note that if the material has elastic modulus E, then Ae = Ag/E, and ¥ = 0, /E.
Basquin (1910), Coffin (1954), and Manson (1953) observed the following facts about
strain-driven defect-free fatigue:

e When the stress amplitude is largely below the macroscopic yield
strength of the material, the fatigue lifetime is high, N, 2 10* cycles.
In this “high-cycle” regime, the lifetime N; primarily depends on
the elastic strain amplitude, and the plastic strain amplitude is
negligible®. Failure is dominated by the strength of the material.

¢ When the stress amplitude exceeds the yield strength, the fatigue
lifetime is low, N; < 10* cycles. In this “low-cycle” regime, the
lifetime N; primarily depends on the plastic strain amplitude, which
is larger than the elastic strain amplitude. Failure is dominated by
the ductility of the material.

“Despite the plastic strain amplitude being small in comparison to the elastic strain amplitude, it
is important to re-emphasize that microscale plasticity is still present, and this is the source of
crack growth.

Experimentally, it has been found that power-law relationships work well for describing
the fatigue lifetimes, in both regimes. Let 2Ny denote the number of reversals to failure
(in one cycle of loading there are two reversals of the strain direction). Then, in the
high-cycle regime,

el o, = oy (2N4)°,

and in the low-cycle regime,
el = ey - (2Ny)",

where {J}, b}, and {s’f, ¢} are material property coefficients called the fatigue strength
and fatigue ductility parameters, respectively.

Finally, we note that a tensile mean stress, o, > 0, causes a reduction in the fatigue life,
because of the tendency for tensile stresses to propagate cracks. This effect is particuarly
relevant for the high-cycle regime, when the overall plastic strain is small. Hence, the
effective fatigue strength coefficient a} is smaller. The usual assumption is that a} can
be replaced simply by 0} — Om.

For a complete (approximate) description of the strain-life behavior, we can combine
these formulations into a “master curve” using the additive decomposition e, = ¥ +

P.
€y

Key Equation 8.1.7 (Strain-life formula, defect-free fatigue approach)

For ,, <0, the total strain amplitude ¢, is related to the number of reversals to
failure 2Ny by

/

_ ﬁ b / c
€a = E (2Nf) +6f(2Nf) ) (Jm S 0)7

by the elastic modulus £ and the fatigue strength and fatigue ductility parameters,
all material constants.
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For o, > 0, the formula accounts for the tensile mean stress effects:

O'}—O'm

5 (2Nf)b + é‘lf(QNf)c, (om > 0).

Eaq —

8.1.3 Miner’s Rule

The strain-life formula is appropriate when the value of ¢, is constant throughout the
entire service lifetime. But this, in general, is not the case for most parts. Rather, a part
is subjected to a series of, say, N “types” of cyclic loading, each at strain amplitude (e,);
for n; cycles, i = 1,2,3,..., N. Miner’s rule says that we can treat this complicated
history as a linear one in which we only care about the cumulative fatigue damage.
Specifically, say that strain amplitude (e,); is associated with a fatigue life of (Ny);
cycles, by the usual strain-life formula. Then, the failure criterion becomes

2yt

=1

In words, each of the N “blocks” of loading contributes a nondimensional fraction of
total damage n;/(N¢);, which is normalized by the computed fatigue life for that loading.
When the cumulative damage equals one, the part is said to have reached its fatigue life.

8.2 Defect-tolerant approach

In the defect-tolerant approach, we are concerned with the number of cycles to failure,
again Ny, that corresponds to the number of cycles to propagate an (existing or assumed-
to-exist) initial crack of length a; to a final length a., which corresponds with the condition
K7 = Kj.. The length a; is either measured using NDE, or assumed to be the largest
undetectable crack with the present NDE measurement technique, if no crack is explicitly
found. The length a. is given in terms of the material’s fracture toughness and the

maximum far-field stress,
1 < K. )2
e = —
¢ ™ Qamax

To determine the number of cycles it takes to propagate a crack from a; to a., it is
necessary to model the rate at which the crack grows, with respect to the number of
cycles. In particular, let da/dN represent the incremental extension Aa of a crack of
length a in a single cycle. In terms of fracture properties, the applied cyclic stress with
range Ao corresponds to an applied cyclic stress intensity with range AK7:

AKp = QAU\/F = Q(Umax - Umin)ﬂ-

Remark 8.2.1: In the defect-tolerant approach the stress range Ao is only the tensile
stress range, because compressive stresses are assumed not to contribute to crack
growth. Hence, if o < 0, we take AK; = Q(0max — 0)v/ma. For example, if the
stress on a component is cycled between —3 MPa and +3 MPa, use Ac = 3 MPa.

Experimental data of da/dN versus AKy reveals the following trend:
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1. At low values of AK; (corresponding to low values of Ac), there is negligible
crack growth. Typically da/dN < 1072 m/cycle, so the crack is only advancing by
nanometers every second.

2. Past a threshold value of AK[, which is denoted AK7 4, the plot of da/dN versus

A K7 is roughly log-linear, suggesting a power law relationship,

da
— =C(AK)™.
ay ~ CAKD)
The fit parameters C' and m are experimentally determined and represent material

parameters. In this regime, typically 10~° m/cycle < da/dN < 1075 m/cycle.

3. As K71 mqz approaches Kj., the crack growth rate increases without bound until
K7 mar = Kic and failure occurs. The upper limit of AK; that corresponds with a
deviation from log-linearity is usually taken to be the design upper limit for crack
growth.

Therefore the following simple form for the crack growth rate is assumed.

Key Equation 8.2.2 (Paris’ Law)

Let AK; = QAo+/ma be the cyclic stress intensity range. Then the crack growth
rate da/dN is given by

da {O, AKr < AKpp;

dN " \C(AKn)™,  AKp > AKpg.

Remark 8.2.3: The dimensions of C' are complicated and depend on the value of m.
In particular, C' has units of [(meters per cycle) per (MPay/m)™].

Remark 8.2.4: In general, the configuration correction factor () is a function of a,
and thus @ changes as the crack grows. This makes it difficult to write an analytical
formula for a = a(N) without making assumptions. One common simplifying
assumption is that @ is roughly constant during the crack growth process, which is
appropriate for small cracks.

Computing the number of cycles to failure is thus simplified to the problem of finding
N; = 0 — Ny corresponding to the growth of the crack from a; — a. according to Paris’
law. To that end, we rearrange the differential equation as

1 1 1 1

N =G arym = ¢ 0bevmam

from which it follows that
N/Nde/acl L d
A = ). CQ@Aoyma)m

If Q and Ao are constant over the entire loading period, then the integrand simplifies
and an analytical solution can be written out.
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Key Equation 8.2.5 (Integrated form of Paris’ Law)

If AK; > AKjyp,, for constant Q and Ao, the number of cycles to failure Ny,
corresponding to the number of cycles it takes to grow a crack from size a; to size
ae = (1/7)(K1e/Qomax)?, is given by

1 1 Qe
- - —m/2
Nf C (Q Ao \/T‘)m ~/ai ¢ da.

For m = 2, this yields

and for m # 2 this yields

(3

_ 2 (2-m)/2 _  (2-m)/2
N = —2)0Qbe )™ g o).

Clearly Ny is affected by the value of K. (through a.), the initial crack size a;, and
the stress range Ao. Typically, Kj. (a material property) and Ao (a property of the
application) are hard to control, so the best knob to tune in practical engineering practices
is a;, either by an improved manufacturing process and/or NDE techniques with better
resolution.

I Exercise 8.2.6. AKG 4.16 through 4.28.
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